Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Nat Commun ; 15(1): 46, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167804

ABSTRACT

Addressing age-related immunological defects through therapeutic interventions is essential for healthy aging, as the immune system plays a crucial role in controlling infections, malignancies, and in supporting tissue homeostasis and repair. In our study, we show that stimulating toll-like receptor 5 (TLR5) via mucosal delivery of a flagellin-containing fusion protein effectively extends the lifespan and enhances the healthspan of mice of both sexes. This enhancement in healthspan is evidenced by diminished hair loss and ocular lens opacity, increased bone mineral density, improved stem cell activity, delayed thymic involution, heightened cognitive capacity, and the prevention of pulmonary lung fibrosis. Additionally, this fusion protein boosts intestinal mucosal integrity by augmenting the surface expression of TLR5 in a certain subset of dendritic cells and increasing interleukin-22 (IL-22) secretion. In this work, we present observations that underscore the benefits of TLR5-dependent stimulation in the mucosal compartment, suggesting a viable strategy for enhancing longevity and healthspan.


Subject(s)
Longevity , Toll-Like Receptor 5 , Animals , Mice , Flagellin/metabolism , Intestinal Mucosa/metabolism , Longevity/genetics , Lung/metabolism
2.
Cell Stress ; 7(12): 105-111, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38145234

ABSTRACT

The increased burden of senescent cells is as a well-established hallmark of aging and age-related diseases. This finding sparked significant interest in the identification of molecules capable of selectively eliminating senescent cells, so-called senolytics. Here, we fine-tuned a method for the identification of senolytics that is compatible with high-content fluorescence microscopy. We used spectral detector imaging to measure the emission spectrum of unlabeled control or senescent cells. We observed that senescent cells exhibited higher levels of autofluorescence than their non-senescent counterparts, particularly in the cytoplasmic region. Building on this result, we devised a senolytic assay based on co-culturing quiescent and senescent cells, fluorescently tagged in the nuclear region through the overexpression of H2B-GFP and H2B-RFP, respectively. We validated this approach by showing that first generation senolytics were effective in reducing the number of RFP+ nuclei leaving the count of GFP+ nuclei unaffected. The result was confirmed by flow cytometry analysis of nuclei isolated from these quiescent-senescent cell co-cultures. We found that this system enables to capture cell type-specific effects of senolytics as in the case of fisetin, which kills senescent Mouse Embryonic Fibroblasts but not senescent human melanoma SK-MEL-103 cells. This approach is amenable to genetic and chemical screening for the discovery of senolytic compounds in that it overcomes the limitations of current methods, which rely upon costly chemical reagents or fluorescence microscopy using cells labeled with fluorescent cytoplasmic probes that overlap with the autofluorescence signal emitted by senescent cells.

3.
Nat Cell Biol ; 25(12): 1804-1820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012402

ABSTRACT

Drugs that selectively kill senescent cells (senolytics) improve the outcomes of cancer, fibrosis and age-related diseases. Despite their potential, our knowledge of the molecular pathways that affect the survival of senescent cells is limited. To discover senolytic targets, we performed RNAi screens and identified coatomer complex I (COPI) vesicle formation as a liability of senescent cells. Genetic or pharmacological inhibition of COPI results in Golgi dispersal, dysfunctional autophagy, and unfolded protein response-dependent apoptosis of senescent cells, and knockdown of COPI subunits improves the outcomes of cancer and fibrosis in mouse models. Drugs targeting COPI have poor pharmacological properties, but we find that N-myristoyltransferase inhibitors (NMTi) phenocopy COPI inhibition and are potent senolytics. NMTi selectively eliminated senescent cells and improved outcomes in models of cancer and non-alcoholic steatohepatitis. Our results suggest that senescent cells rely on a hyperactive secretory apparatus and that inhibiting trafficking kills senescent cells with the potential to treat various senescence-associated diseases.


Subject(s)
Neoplasms , Senotherapeutics , Mice , Animals , Golgi Apparatus/metabolism , Cellular Senescence , Neoplasms/metabolism , Fibrosis
4.
Nat Metab ; 5(11): 1911-1930, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37973897

ABSTRACT

Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B12 and molecular hallmarks of methionine starvation. Supplementation with vitamin B12 increases the efficiency of reprogramming both in mice and in cultured cells, the latter indicating a cell-intrinsic effect. We show that the epigenetic mark H3K36me3, which prevents illegitimate initiation of transcription outside promoters (cryptic transcription), is sensitive to vitamin B12 levels, providing evidence for a link between B12 levels, H3K36 methylation, transcriptional fidelity and efficient reprogramming. Vitamin B12 supplementation also accelerates tissue repair in a model of ulcerative colitis. We conclude that vitamin B12, through its key role in one-carbon metabolism and epigenetic dynamics, improves the efficiency of in vivo reprogramming and tissue repair.


Subject(s)
Cell Plasticity , Cellular Reprogramming , Animals , Mice , Vitamin B 12 , Wound Healing , Vitamins
5.
J Am Soc Mass Spectrom ; 34(11): 2518-2524, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37830184

ABSTRACT

Single-cell metabolomics has the potential to reveal unique insights into intracellular mechanisms and biological processes. However, the detection of metabolites from individual cells is challenging due to their versatile chemical properties and concentrations. Here, we demonstrate a tapered probe for pneumatically assisted nanospray desorption electrospray ionization (PA nano-DESI) mass spectrometry that enables both chemical imaging of larger cells and global metabolomics of smaller 15 µm cells. Additionally, by depositing cells in predefined arrays, we show successful metabolomics from three individual INS-1 cells per minute, which enabled the acquisition of data from 479 individual cells. Several cells were used to optimize analytical conditions, and 93 or 97 cells were used to monitor metabolome alterations in INS-1 cells after exposure to a low or high glucose concentration, respectively. Our analytical approach offers insights into cellular heterogeneity and provides valuable information about cellular processes and responses in individual cells.


Subject(s)
Metabolomics , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods
6.
Aging (Albany NY) ; 15(14): 6641-6657, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37393107

ABSTRACT

Cell senescence has recently emerged as a potentially relevant pathogenic mechanism in fibrosing interstitial lung diseases (f-ILDs), particularly in idiopathic pulmonary fibrosis. We hypothesized that senescent human fibroblasts may suffice to trigger a progressive fibrogenic reaction in the lung. To address this, senescent human lung fibroblasts, or their secretome (SASP), were instilled into the lungs of immunodeficient mice. We found that: (1) human senescent fibroblasts engraft in the lungs of immunodeficient mice and trigger progressive lung fibrosis associated to increasing levels of mouse senescent cells, whereas non-senescent fibroblasts do not trigger fibrosis; (2) the SASP of human senescent fibroblasts is pro-senescence and pro-fibrotic both in vitro when added to mouse recipient cells and in vivo when delivered into the lungs of mice, whereas the conditioned medium (CM) from non-senescent fibroblasts lacks these activities; and, (3) navitoclax, nintedanib and pirfenidone ameliorate lung fibrosis induced by senescent human fibroblasts in mice, albeit only navitoclax displayed senolytic activity. We conclude that human senescent fibroblasts, through their bioactive secretome, trigger a progressive fibrogenic reaction in the lungs of immunodeficient mice that includes the induction of paracrine senescence in the cells of the host, supporting the concept that senescent cells actively contribute to disease progression in patients with f-ILDs.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Animals , Mice , Aniline Compounds , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Cellular Senescence , Fibrosis , Fibroblasts/pathology
7.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Article in English | MEDLINE | ID: mdl-37100955

ABSTRACT

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Subject(s)
Apoptosis , Caspases , Animals , Humans , Apoptosis/genetics , Cell Death , Caspases/genetics , Caspases/metabolism , Carcinogenesis , Mammals/metabolism
9.
Biomed J ; 46(3): 100581, 2023 06.
Article in English | MEDLINE | ID: mdl-36746349

ABSTRACT

Cellular senescence is a complex process involving a close-to-irreversible arrest of the cell cycle, the acquisition of the senescence-associated secretory phenotype (SASP), as well as profound changes in the expression of cell surface proteins that determine the recognition of senescent cells by innate and cognate immune effectors including macrophages, NK, NKT and T cells. It is important to note that senescence can occur in a transient fashion to improve the homeostatic response of tissues to stress. Moreover, both the excessive generation and the insufficient elimination of senescent cells may contribute to pathological aging. Attempts are being made to identify the mechanisms through which senescent cell avoid their destruction by immune effectors. Such mechanisms involve the cell surface expression of immunosuppressive molecules including PD-L1 and PD-L2 to ligate PD-1 on T cells, as well as tolerogenic MHC class-I variants. In addition, senescent cells can secrete factors that attract immunosuppressive and pro-inflammatory cells into the microenvironment. Each of these immune evasion mechanism offers a target for therapeutic intervention, e.g., by blocking the interaction between PD-1 and PD-L1 or PD-L2, upregulating immunogenic MHC class-I molecules and eliminating immunosuppressive cell types. In addition, senescent cells differ in their antigenic makeup and immunopeptidome from their normal counterparts, hence offering the opportunity to stimulate immune response against senescence-associated antigens. Ideally, immunological anti-senescence strategies should succeed in selectively eliminating pathogenic senescent cells but spare homeostatic senescence.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , Cellular Senescence/physiology , Macrophages
10.
Cell Metab ; 35(1): 12-35, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36599298

ABSTRACT

Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.


Subject(s)
Epigenesis, Genetic , Neoplasms , Humans , Aged , Aging/metabolism , Cellular Senescence , Stem Cells/metabolism , Neoplasms/metabolism
11.
Cancer Discov ; 13(2): 410-431, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36302218

ABSTRACT

Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE: Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Humans , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/immunology , Cellular Senescence , Tumor Microenvironment
12.
Oncoimmunology ; 12(1): 2154115, 2023.
Article in English | MEDLINE | ID: mdl-36531690

ABSTRACT

Cancer therapy often induces senescence in some cancer cells. Senescent cells, due to their profoundly altered biology, may conceivably interact with the adaptive immune system in novel ways that may boost cancer immunosurveillance, triggering the clearance of both senescent and non-senescent neoplastic cells. In this regard, we have recently reported that senescent cancer cells exhibit potent antigenicity and adjuvanticity and can elicit strong CD8+ T cell-dependent anticancer effects when used as vaccination agents.


Subject(s)
Cellular Senescence , Neoplasms , Humans , Monitoring, Immunologic , Neoplasms/therapy , Immune System
13.
Oncoimmunology ; 11(1): 2146855, 2022.
Article in English | MEDLINE | ID: mdl-36387057

ABSTRACT

Writing in Science, Al Habsi et al. show that spermidine boosts the efficacy of monoclonal antibodies targeting PD-L1 in aged tumor-bearing mice by enhancing fatty acid oxidation in CD8 T cells. These results open new therapeutic avenues to improve the effectiveness of anticancer immunotherapies in aged patients.


Subject(s)
Immunotherapy , Spermidine , Mice , Animals , Monitoring, Immunologic , Spermidine/pharmacology , Spermidine/therapeutic use , Cell Line, Tumor , Immunotherapy/methods , Lymphocyte Count
14.
Int Rev Cell Mol Biol ; 373: 107-123, 2022.
Article in English | MEDLINE | ID: mdl-36283764

ABSTRACT

The therapeutic outcome of multiple anticancer regimens relies upon a fine balance between tumor intrinsic and host-related factors. In this context, qualitative changes in dietary composition as well as alterations in total calorie supply influence essential aspects of cancer biology, spanning from tumor initiation to metastatic spreading. On the one hand, circumstances of nutritional imbalance or excessive calorie intake promote oncogenesis, accelerate tumor progression, and hamper the efficacy of anticancer treatments. On the other hand, approaches based on bulk (e.g., fasting, fasting mimicking diets) or selective (e.g., amino acids) shortage of nutrients are currently in the spotlight for their ability to potentiate the effect of anticancer drugs. While the chemosensitizing effect of fasting has long been attributed to the overdemanding metabolic requirements of neoplastic cells, recent findings suggest that caloric restriction improves the efficacy of chemotherapy and immunotherapy by boosting anticancer immunosurveillance. Here, we provide a critical overview of current preclinical and clinical studies that address the impact of nutritional interventions on the response to cancer therapy, laying particular emphasis on fasting-related interventions.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Fasting/physiology , Caloric Restriction , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Amino Acids
15.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191214

ABSTRACT

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Subject(s)
Diazepam Binding Inhibitor , Receptors, GABA-A , Animals , Mice , Acetaminophen , Antibodies, Monoclonal/metabolism , Antioxidants , Autoantibodies/metabolism , Autophagy , Carbon Tetrachloride , Carrier Proteins/genetics , Choline , Coenzyme A/metabolism , Concanavalin A/metabolism , Diazepam , Diazepam Binding Inhibitor/metabolism , Fatty Acids/metabolism , Fibrosis , Inflammation , Methionine
16.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408859

ABSTRACT

Amyloidoses are characterized by the accumulation and aggregation of misfolded proteins into fibrils in different organs, leading to cell death and consequent organ dysfunction. The specific substitution of Leu 75 for Pro in Apolipoprotein A-I protein sequence (ApoA-I; L75P-ApoA-I) results in late onset amyloidosis, where deposition of extracellular protein aggregates damages the normal functions of the liver. In this work, we describe that the autophagic process is inhibited in the presence of the L75P-ApoA-I amyloidogenic variant in stably transfected human hepatocyte carcinoma cells. The L75P-ApoA-I amyloidogenic variant alters the redox status of the cells, resulting into excessive mitochondrial stress and consequent cell death. Moreover, L75P-ApoA-I induces an impairment of the autophagic flux. Pharmacological induction of autophagy or transfection-enforced overexpression of the pro-autophagic transcription factor EB (TFEB) restores proficient proteostasis and reduces oxidative stress in these experimental settings, suggesting that pharmacological stimulation of autophagy could be a promising target to alleviate ApoA-I amyloidosis.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Amyloidosis/genetics , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Autophagy/genetics , Humans , Protein Aggregates
17.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35420133

ABSTRACT

The ectopic expression of the transcription factors OCT4, SOX2, KLF4 and MYC (OSKM) enables reprogramming of differentiated cells into pluripotent embryonic stem cells. Methods based on partial and reversible in vivo reprogramming are a promising strategy for tissue regeneration and rejuvenation. However, little is known about the barriers that impair reprogramming in an in vivo context. We report that natural killer (NK) cells significantly limit reprogramming, both in vitro and in vivo. Cells and tissues in the intermediate states of reprogramming upregulate the expression of NK-activating ligands, such as MULT1 and ICAM1. NK cells recognize and kill partially reprogrammed cells in a degranulation-dependent manner. Importantly, in vivo partial reprogramming is strongly reduced by adoptive transfer of NK cells, whereas it is significantly increased by their depletion. Notably, in the absence of NK cells, the pancreatic organoids derived from OSKM-expressing mice are remarkably large, suggesting that ablating NK surveillance favours the acquisition of progenitor-like properties. We conclude that NK cells pose an important barrier for in vivo reprogramming, and speculate that this concept may apply to other contexts of transient cellular plasticity.


Subject(s)
Cellular Reprogramming , Pluripotent Stem Cells , Animals , Cell Differentiation , Cellular Reprogramming/genetics , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Killer Cells, Natural/metabolism , Kruppel-Like Factor 4/metabolism , Mice , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , SOXB1 Transcription Factors/metabolism
18.
Methods Cell Biol ; 164: 39-46, 2021.
Article in English | MEDLINE | ID: mdl-34225917

ABSTRACT

The activation of autophagy has long been recognized as a central mechanism of healthspan and lifespan regulation at the organismal level, thus spurring major interest in identifying pharmacological or lifestyle interventions able to ignite the autophagic reaction in vivo. Consistently, there is growing need for the implementation in the preclinical practice of an "autophagometer," to be intended as a simple and non-invasive method to measure the autophagic flux in living organisms. Using fasting as the prototypical trigger of autophagy, we describe here a system (based on a leupeptin-based assay and video-flow cytometric detection of LC3B puncta) to quantitate autophagy in circulating leukocytes in mouse. We suggest that this method can be reliably used in the experimental routine to validate the pro-autophagy action of candidate drugs in vivo.


Subject(s)
Autophagy , Leukocytes , Animals , Flow Cytometry , Mice , Microtubule-Associated Proteins
19.
Methods Cell Biol ; 165: 111-122, 2021.
Article in English | MEDLINE | ID: mdl-34311860

ABSTRACT

Acyl-CoA binding protein (ACBP), also called diazepam-binding inhibitor (DBI), is a ubiquitous protein that can be secreted from cells by an unconventional pathway. Depending on its levels and on its subcellular localization, ACBP/DBI can regulate lipid metabolism. Several studies have shown that ACBP/DBI is secreted by an autophagy-dependent mechanism, positioning this catabolic pathway as the mechanism that controls lipid metabolism through the intracellular modulation of the levels of this protein. Autophagy is activated, among other stimuli, when cells have increased energy requirements; this causes a drop in the intracellular ACBP/DBI levels due to its release into the extracellular space and triggers an increase in the lipid catabolism. Conversely, when autophagy is inhibited, during pathological (obesity) or physiological (after-meal) situations, the intracellular levels of ACBP/DBI increase resulting in the activation of lipid anabolism, this effect has been demonstrated to be the link between obesity and autophagy inhibition. Here, we detail three different protocols for the detection of the ACBP/DBI levels by immunofluorescence, image flow cytometry or immunoblot techniques, which allow the quantification of ACBP/DBI levels and, indirectly, its autophagy-dependent release.


Subject(s)
Diazepam Binding Inhibitor , Obesity , Autophagy , Diazepam Binding Inhibitor/metabolism , Humans , Lipid Metabolism
20.
Antioxidants (Basel) ; 10(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445755

ABSTRACT

Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.

SELECTION OF CITATIONS
SEARCH DETAIL
...