Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 200(6): 1977-1981, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29440505

ABSTRACT

The T-box transcription factors T-bet and Eomesodermin (Eomes) instruct discrete stages in NK cell development. However, their role in the immune response of mature NK cells against pathogens remains unexplored. We used an inducible deletion system to elucidate the cell-intrinsic role of T-bet and Eomes in mature NK cells during the course of mouse CMV infection. We show both T-bet and Eomes to be necessary for the expansion of virus-specific NK cells, with T-bet upregulation induced by IL-12 signaling and STAT4 binding to a conserved enhancer region upstream of the Tbx21 loci. Interestingly, our data suggest maintenance of virus-specific memory NK cell numbers and phenotype was dependent on T-bet, but not Eomes. These findings uncover a nonredundant and stage-specific influence of T-box transcription factors in the antiviral NK cell response.


Subject(s)
Immunologic Memory/immunology , Killer Cells, Natural/immunology , T-Box Domain Proteins/immunology , Animals , Cytomegalovirus Infections/immunology , Interleukin-12/immunology , Mice , STAT4 Transcription Factor/immunology , Up-Regulation/immunology
2.
J Immunol ; 196(4): 1449-54, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26792802

ABSTRACT

Type 1 innate lymphocytes comprise two developmentally divergent lineages, type 1 helper innate lymphoid cells (hILC1s) and conventional NK cells (cNKs). All type 1 innate lymphocytes (ILCs) express the transcription factor T-bet, but cNKs additionally express Eomesodermin (Eomes). We show that deletion of Eomes alleles at the onset of type 1 ILC maturation using NKp46-Cre imposes a substantial block in cNK development. Formation of the entire lymphoid and nonlymphoid type 1 ILC compartment appears to require the semiredundant action of both T-bet and Eomes. To determine if Eomes is sufficient to redirect hILC1 development to a cNK fate, we generated transgenic mice that express Eomes when and where T-bet is expressed using Tbx21 locus control to drive expression of Eomes codons. Ectopic Eomes induces cNK-like properties across the lymphoid and nonlymphoid type 1 ILC compartments. Subsequent to their divergent lineage specification, hILC1s and cNKs thus possess substantial developmental plasticity.


Subject(s)
Killer Cells, Natural/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Lineage , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Mice, Transgenic , Th1 Cells/immunology
3.
Nat Chem Biol ; 7(10): 748-55, 2011 Aug 14.
Article in English | MEDLINE | ID: mdl-21841796

ABSTRACT

Purine riboswitches have an essential role in genetic regulation of bacterial metabolism. This family includes the 2'-deoxyguanosine (dG) riboswitch, which is involved in feedback control of deoxyguanosine biosynthesis. To understand the principles that define dG selectivity, we determined crystal structures of the natural Mesoplasma florum riboswitch bound to cognate dG as well as to noncognate guanosine, deoxyguanosine monophosphate and guanosine monophosphate. Comparison with related purine riboswitch structures reveals that the dG riboswitch achieves its specificity through modification of key interactions involving the nucleobase and rearrangement of the ligand-binding pocket to accommodate the additional sugar moiety. In addition, we observe new conformational changes beyond the junctional binding pocket extending as far as peripheral loop-loop interactions. It appears that re-engineering riboswitch scaffolds will require consideration of selectivity features dispersed throughout the riboswitch tertiary fold, and structure-guided drug design efforts targeted to junctional RNA scaffolds need to be addressed within such an expanded framework.


Subject(s)
Deoxyguanosine/chemistry , Deoxyguanosine/metabolism , Entomoplasmataceae/genetics , Nucleic Acid Conformation , Riboswitch , Crystallography, X-Ray , Models, Molecular , Riboswitch/genetics
4.
Methods Mol Biol ; 540: 115-28, 2009.
Article in English | MEDLINE | ID: mdl-19381556

ABSTRACT

Riboswitches are mRNA regions that regulate the expression of genes in response to various cellular metabolites. These RNA sequences, typically situated in the untranslated regions of mRNAs, possess complex structures that dictate highly specific binding to certain ligands, such as nucleobases, coenzymes, amino acids, and sugars, without protein assistance. Depending on the presence of the ligand, metabolite-binding domains of riboswitches can adopt two alternative conformations, which define the conformations of the adjacent sequences involved in the regulation of gene expression. In order to understand in detail the nature of riboswitch-ligand interactions and the molecular basis of riboswitch-based gene expression control, it is necessary to determine the three-dimensional structures of riboswitch-ligand complexes. This chapter outlines the techniques that are employed to prepare riboswitch-ligand complexes for structure determination using X-ray crystallography. The chapter describes the principles of construct design, in vitro transcription, RNA purification, complex formation, and crystallization screening utilized during the successful crystallization of several riboswitches.


Subject(s)
Crystallization/methods , RNA, Untranslated/chemistry , RNA, Untranslated/chemical synthesis , Base Sequence , Crystallography, X-Ray , Ligands , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Untranslated/genetics , Regulatory Sequences, Ribonucleic Acid/genetics
5.
J Med Case Rep ; 2: 229, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18627621

ABSTRACT

INTRODUCTION: Common manifestations of multiple myeloma include osteolytic lesions, cytopenias, hypercalcemia, and renal insufficiency. Patients may also exhibit heart failure which is often associated with either past therapy or cardiac amyloidosis. A less recognized mechanism is high-output heart failure. Diuretic therapy in this setting has little efficacy in treating the congested state. Furthermore, effective pharmacotherapy has not been established. We report two patients with multiple myeloma and high-output heart failure who failed diuretic therapy. The patients were given dexamethasone in conjunction with lenalidomide and thalidomide, respectively. Shortly thereafter, each patient demonstrated a significant improvement in symptoms. This is the first report of successful treatment of multiple myeloma-induced high-output failure via the utilization of these agents. CASE PRESENTATION: Two patients with multiple myeloma were evaluated for volume overload. The first was a 50-year-old man with refractory disease. Magnetic resonance imaging demonstrated diffuse marrow replacement throughout the pelvis. Cardiac catheterization conveyed elevated filling pressures and a cardiac output of 15 liters/minute. He quickly decompensated and required mechanical ventilation. The second patient was a 61-year-old man recently diagnosed with multiple myeloma and volume overload. Skeletal survey demonstrated numerous lytic lesions throughout the pelvis. His cardiac catheterization also conveyed elevated filling pressures and a cardiac output of 10 liters/minute. Neither patient responded to diuretic therapy and they were subsequently started on dexamethasone plus lenalidomide and thalidomide, respectively. The first patient's brisk diuresis allowed for extubation within 48 hours after the first dose. He had a net negative fluid balance of 15 liters over 10 days. The second patient also quickly diuresed and on repeat cardiac catheterization, his cardiac output had normalized to 4.7 liters/minute. CONCLUSION: Multiple myeloma can cause high-output failure. The mechanism is likely extensive bony involvement causing innumerable intramedullary arteriovenous fistulas. Diuretic therapy is not effective in treating this condition. Lenalidomide and thalidomide, both of which inhibit angiogenesis, seem to be viable treatment options. Based on the rapid and effective results seen in these two patients, a potential novel mechanism of 'pharmacologic fistula ligation' with these agents may be the most effective way to treat this presentation.

6.
Chem Biol ; 11(12): 1729-41, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15610857

ABSTRACT

Metabolite-sensing mRNAs, or "riboswitches," specifically interact with small ligands and direct expression of the genes involved in their metabolism. Riboswitches contain sensing "aptamer" modules, capable of ligand-induced structural changes, and downstream regions, harboring expression-controlling elements. We report the crystal structures of the add A-riboswitch and xpt G-riboswitch aptamer modules that distinguish between bound adenine and guanine with exquisite specificity and modulate expression of two different sets of genes. The riboswitches form tuning fork-like architectures, in which the prongs are held in parallel through hairpin loop interactions, and the internal bubble zippers up to form the purine binding pocket. The bound purines are held by hydrogen bonding interactions involving conserved nucleotides along their entire periphery. Recognition specificity is associated with Watson-Crick pairing of the encapsulated adenine and guanine ligands with uridine and cytosine, respectively.


Subject(s)
Adenine/chemistry , Gene Expression Regulation, Bacterial/physiology , Guanine/chemistry , RNA, Bacterial/chemistry , RNA, Messenger/chemistry , Adenine/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Crystallography, X-Ray , Guanine/metabolism , Ligands , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Protein Folding , Protein Structure, Tertiary , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Sensitivity and Specificity , Substrate Specificity , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...