Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Biophys J ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38605520

ABSTRACT

The Na+-activated K+ channel KNa1.1, encoded by the KCNT1 gene, is an important regulator of neuronal excitability. How intracellular Na+ ions bind and increase channel activity is not well understood. Analysis of KNa1.1 channel structures indicate that there is a large twisting of the ßN-αQ loop in the intracellular RCK2 domain between the inactive and Na+-activated conformations, with a lysine (K885, human subunit numbering) close enough to potentially form a salt bridge with an aspartate (D839) in ßL in the Na+-activated state. Concurrently, an aspartate (D884) adjacent in the same loop adopts a position within a pocket formed by the ßO strand. In carrying out mutagenesis and electrophysiology with human KNa1.1, we found that alanine substitution of selected residues in these regions resulted in almost negligible currents in the presence of up to 40 mM intracellular Na+. The exception was D884A, which resulted in constitutively active channels in both the presence and absence of intracellular Na+. Further mutagenesis of this site revealed an amino acid size-dependent effect. Substitutions at this site by an amino acid smaller than aspartate (D884V) also yielded constitutively active KNa1.1, and D884I had Na+ dependence similar to wild-type KNa1.1, while increasing the side-chain size larger than aspartate (D884E or D884F) yielded channels that could not be activated by up to 40 mM intracellular Na+. We conclude that Na+ binding results in a conformational change that accommodates D884 in the ßO pocket, which triggers further conformational changes in the RCK domains and channel activation.

2.
Nat Commun ; 15(1): 2533, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514618

ABSTRACT

Small-molecule modulators of diverse voltage-gated K+ (Kv) channels may help treat a wide range of neurological disorders. However, developing effective modulators requires understanding of their mechanism of action. We apply an orthogonal approach to elucidate the mechanism of action of an imidazolidinedione derivative (AUT5), a highly selective positive allosteric modulator of Kv3.1 and Kv3.2 channels. AUT5 modulation involves positive cooperativity and preferential stabilization of the open state. The cryo-EM structure of the Kv3.1/AUT5 complex at a resolution of 2.5 Å reveals four equivalent AUT5 binding sites at the extracellular inter-subunit interface between the voltage-sensing and pore domains of the channel's tetrameric assembly. Furthermore, we show that the unique extracellular turret regions of Kv3.1 and Kv3.2 essentially govern the selective positive modulation by AUT5. High-resolution apo and bound structures of Kv3.1 demonstrate how AUT5 binding promotes turret rearrangements and interactions with the voltage-sensing domain to favor the open conformation.


Subject(s)
Shaw Potassium Channels , Binding Sites , Shaw Potassium Channels/metabolism
3.
J Neurosci ; 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35863891

ABSTRACT

Migraine is a complex brain disorder, characterized by attacks of unilateral headache and global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown. The finding of enhanced excitatory, but unaltered inhibitory, neurotransmission at cortical synapses between pyramidal cells (PCs) and fast-spiking interneurons (FS INs) in mouse models of familial hemiplegic migraine (FHM) suggested the hypothesis that dysregulation of the excitatory-inhibitory (E/I) balance in specific circuits is a key pathogenic mechanism. Here, we investigated the cortical layer 2/3 (L2/3) feedback inhibition microcircuit involving somatostatin-expressing (SOM) INs in FHM1 mice of both sexes carrying a gain-of-function mutation in CaV2.1. Unitary inhibitory neurotransmission at SOM IN-PC synapses was unaltered while excitatory neurotransmission at both PC-SOM IN and PC-PC synapses was enhanced, because of increased probability of glutamate release, in FHM1 mice. Short-term synaptic depression was enhanced at PC-PC synapses while short-term synaptic facilitation was unaltered at PC-SOM IN synapses during 25-Hz repetitive activity. The frequency-dependent disynaptic inhibition (FDDI) mediated by SOM INs was enhanced, lasted longer and required shorter high-frequency bursts to be initiated in FHM1 mice. These findings, together with previous evidence of enhanced disynaptic feedforward inhibition by FS INs, suggest that the increased inhibition may effectively counteract the increased recurrent excitation in FHM1 mice and may even prevail in certain conditions. Considering the involvement of SOM INs in γ oscillations, surround suppression and context-dependent sensory perception, the facilitated recruitment of SOM INs, together with the enhanced recurrent excitation, may contribute to dysfunctional sensory processing in FHM1 and possibly migraine.SIGNIFICANCE STATEMENTMigraine is a complex brain disorder, characterized by attacks of unilateral headache and global dysfunction in multisensory information processing, whose underlying cellular and circuit mechanisms remain unknown, although dysregulation of the excitatory-inhibitory (E/I) balance in specific circuits could be a key pathogenic mechanism. Here, we provide insights into these mechanisms by investigating the cortical feedback inhibition microcircuit involving somatostatin-expressing interneurons (SOM INs) in a mouse model of a rare monogenic migraine. Despite unaltered inhibitory synaptic transmission, the disynaptic feedback inhibition mediated by SOM INs was enhanced in the migraine model because of enhanced recruitment of the INs. Recurrent cortical excitation was also enhanced. These alterations may contribute to context-dependent sensory processing dysfunctions in migraine.

4.
Elife ; 112022 05 05.
Article in English | MEDLINE | ID: mdl-35510987

ABSTRACT

Kv3 potassium currents mediate rapid repolarisation of action potentials (APs), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal in the mouse. Deletion of Kv3.3 (but not Kv3.1) reduced presynaptic Kv3 channel immunolabelling, increased presynaptic AP duration and facilitated excitatory transmitter release; which in turn enhanced short-term depression during high-frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 mediates fast repolarisation for short precise APs, conserving transmission during sustained high-frequency activity at this glutamatergic excitatory synapse.


Subject(s)
Synapses , Synaptic Transmission , Action Potentials/physiology , Animals , Mice , Neurotransmitter Agents , Presynaptic Terminals/physiology , Synapses/physiology , Synaptic Transmission/physiology
5.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35058310

ABSTRACT

Autonomic parasympathetic preganglionic neurons (PGNs) drive contraction of the bladder during micturition but remain quiescent during bladder filling. This quiescence is postulated to be because of recurrent inhibition of PGN by fast-firing adjoining interneurons. Here, we defined four distinct neuronal types within Lamina VII, where PGN are situated, by combining whole cell patch clamp recordings with k-means clustering of a range of electrophysiological parameters. Additional morphologic analysis separated these neuronal classes into parasympathetic preganglionic populations (PGN) and a fast-firing interneuronal population. Kv3 channels are voltage-gated potassium channels (Kv) that allow fast and precise firing of neurons. We found that blockade of Kv3 channels by tetraethylammonium (TEA) reduced neuronal firing frequency and isolated high-voltage-activated Kv currents in the fast-firing population but had no effect in PGN populations. Furthermore, Kv3 blockade potentiated the local and descending inhibitory inputs to PGN indicating that Kv3-expressing inhibitory neurons are synaptically connected to PGN. Taken together, our data reveal that Kv3 channels are crucial for fast and regulated neuronal output of a defined population that may be involved in intrinsic spinal bladder circuits that underpin recurrent inhibition of PGN.


Subject(s)
Neurons , Shaw Potassium Channels , Action Potentials/physiology , Neurons/physiology , Patch-Clamp Techniques , Spinal Cord/physiology
6.
Front Cell Neurosci ; 15: 721371, 2021.
Article in English | MEDLINE | ID: mdl-34539351

ABSTRACT

Spontaneous subthreshold activity in the central nervous system is fundamental to information processing and transmission, as it amplifies and optimizes sub-threshold signals, thereby improving action potential initiation and maintaining reliable firing. This form of spontaneous activity, which is frequently considered noise, is particularly important at auditory synapses where acoustic information is encoded by rapid and temporally precise firing rates. In contrast, when present in excess, this form of noise becomes detrimental to acoustic information as it contributes to the generation and maintenance of auditory disorders such as tinnitus. The most prominent contribution to subthreshold noise is spontaneous synaptic transmission (synaptic noise). Although numerous studies have examined the role of synaptic noise on single cell excitability, little is known about its pre-synaptic modulation owing in part to the difficulties of combining noise modulation with monitoring synaptic release. Here we study synaptic noise in the auditory brainstem dorsal cochlear nucleus (DCN) of mice and show that pharmacological potentiation of Kv3 K+ currents reduces the level of synaptic bombardment onto DCN principal fusiform cells. Using a transgenic mouse line (SyG37) expressing SyGCaMP2-mCherry, a calcium sensor that targets pre-synaptic terminals, we show that positive Kv3 K+ current modulation decreases calcium influx in a fifth of pre-synaptic boutons. Furthermore, while maintaining rapid and precise spike timing, positive Kv3 K+ current modulation increases the synchronization of local circuit neurons by reducing spontaneous activity. In conclusion, our study identifies a unique pre-synaptic mechanism which reduces synaptic noise at auditory synapses and contributes to the coherent activation of neurons in a local auditory brainstem circuit. This form of modulation highlights a new therapeutic target, namely the pre-synaptic bouton, for ameliorating the effects of hearing disorders which are dependent on aberrant spontaneous activity within the central auditory system.

7.
iScience ; 23(5): 101100, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32408169

ABSTRACT

Drug-resistant epileptic encephalopathies of infancy have been associated with KCNT1 gain-of-function mutations, which increase the activity of KNa1.1 sodium-activated potassium channels. Pharmacological inhibition of hyperactive KNa1.1 channels by quinidine has been proposed as a stratified treatment, but mostly this has not been successful, being linked to the low potency and lack of specificity of the drug. Here we describe the use of a previously determined cryo-electron microscopy-derived KNa1.1 structure and mutational analysis to identify how quinidine binds to the channel pore and, using computational methods, screened for compounds predicated to bind to this site. We describe six compounds that inhibited KNa1.1 channels with low- and sub-micromolar potencies, likely also through binding in the intracellular pore vestibule. In hERG inhibition and cytotoxicity assays, two compounds were ineffective. These may provide starting points for the development of new pharmacophores and could become tool compounds to study this channel further.

8.
Hear Res ; 365: 77-89, 2018 08.
Article in English | MEDLINE | ID: mdl-29773471

ABSTRACT

Noise exposure has been shown to produce long-lasting increases in spontaneous activity in central auditory structures in animal models, and similar pathologies are thought to contribute to clinical phenomena such as hyperacusis or tinnitus in humans. Here we demonstrate that multi-unit spontaneous neuronal activity in the inferior colliculus (IC) of mice is significantly elevated four weeks following noise exposure at recording sites with frequency tuning within or near the noise exposure band, and this selective central auditory pathology can be normalised through administration of a novel compound that modulates activity of Kv3 voltage-gated ion channels. The compound had no statistically significant effect on IC spontaneous activity without noise exposure, nor on thresholds or frequency tuning of tone-evoked responses either with or without noise exposure. Administration of the compound produced some reduction in the magnitude of evoked responses to a broadband noise, but unlike effects on spontaneous rates, these effects on evoked responses were not specific to recording sites with frequency tuning within the noise exposure band. Thus, the results suggest that modulators of Kv3 channels can selectively counteract increases in spontaneous activity in the auditory midbrain associated with noise exposure.


Subject(s)
Acoustic Stimulation/methods , Evoked Potentials, Auditory, Brain Stem/drug effects , Imidazoles/pharmacology , Inferior Colliculi/drug effects , Pyrimidines/pharmacology , Shaw Potassium Channels/drug effects , Animals , Auditory Pathways/drug effects , Auditory Pathways/metabolism , Auditory Threshold/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Imidazoles/pharmacokinetics , Inferior Colliculi/metabolism , Male , Mice, Inbred CBA , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pyrimidines/pharmacokinetics , Shaw Potassium Channels/genetics , Shaw Potassium Channels/metabolism , Signal Transduction/drug effects
9.
Hear Res ; 361: 36-44, 2018 04.
Article in English | MEDLINE | ID: mdl-29453003

ABSTRACT

The purpose of this study was to test whether a Kv3 potassium channel modulator, AUT00063, has therapeutic potential for reversing noise-induced increases in spontaneous neural activity, a state that is widely believed to underlie noise-induced tinnitus. Recordings were conducted in noise exposed and control hamsters from dorsal cochlear nucleus (DCN) fusiform cells before and following intraperitoneal administration of AUT00063 (30 mg/kg). Fusiform cell spontaneous activity was increased in sound-exposed animals, approximating levels that were nearly 50% above those of controls. Administration of AUT00063 resulted in a powerful suppression of this hyperactivity. The first signs of this suppression began 13 min after AUT00063 administration, but activity continued to decline gradually until reaching a floor level which was approximately 60% of pre-drug baseline by 25 min after drug treatment. A similar suppressive effect of AUT00063 was observed in control animals, with onset of suppression first apparent at 13 min post-treatment, but continuing to decline toward a floor level that was 54% of pre-drug baseline and was reached 28 min after drug treatment. In contrast, no suppression of spontaneous activity was observed in animals given similar injections of vehicle (control) solution. The suppressive effect of AUT00063 was achieved without significantly altering heart rate and with minimal effects on response thresholds, supporting the interpretation that the reductions of hyperactivity were not a secondary consequence of a more general physiological suppression of the brain or auditory system. These findings suggest that Kv3 channel modulation may be an effective approach to suppressing spontaneous activity in the auditory system and may provide a future avenue for treatment of tinnitus resulting from exposure to intense sound.


Subject(s)
Cochlear Nucleus/drug effects , Imidazoles/pharmacology , Membrane Transport Modulators/pharmacology , Noise/adverse effects , Pyrimidines/pharmacology , Shaw Potassium Channels/drug effects , Animals , Auditory Threshold/drug effects , Cochlear Nucleus/metabolism , Evoked Potentials, Auditory, Brain Stem/drug effects , Imidazoles/therapeutic use , Male , Mesocricetus , Pyrimidines/therapeutic use , Shaw Potassium Channels/metabolism , Time Factors , Tinnitus/drug therapy
10.
Neuropharmacology ; 133: 319-333, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29421326

ABSTRACT

Exposure to loud sound increases burst-firing of dorsal cochlear nucleus (DCN) fusiform cells in the auditory brainstem, which has been suggested to be an electrophysiological correlate of tinnitus. The altered activity of DCN fusiform cells may be due to down-regulation of high voltage-activated (Kv3-like) K+ currents. Whole cell current-clamp recordings were obtained from DCN fusiform cells in brain slices from P15-P18 CBA mice. We first studied whether acoustic over-exposure (performed at P15) or pharmacological inhibition of K+ currents with tetraethylamonium (TEA) affect fusiform cell action potential characteristics, firing frequency and spike-timing relative to evoking current stimuli. We then tested whether AUT1, a modulator of Kv3 K+ currents reverses the effects of sound exposure or TEA. Both loud sound exposure and TEA decreased the amplitude of action potential after-hyperpolarization, reduced the maximum firing frequency, and disrupted spike-timing. These treatments also increased post-synaptic voltage fluctuations at baseline. AUT1 applied in the presence of TEA or following acoustic over-exposure, did not affect the firing frequency, but enhanced action potential after-hyperpolarization, prevented the increased voltage fluctuations and restored spike-timing. Furthermore AUT1 prevented the occurrence of bursts. Our study shows that the effect on spike-timing is significantly correlated with the amplitude of the action potential after-hyperpolarization and the voltage fluctuations at baseline. In conclusion, modulation of putative Kv3 K+ currents may restore regular spike-timing of DCN fusiform cell firing following noise exposure, and could provide a means to restore deficits in temporal encoding observed during noise-induced tinnitus.


Subject(s)
Action Potentials/physiology , Cochlear Nucleus/cytology , Neurons/physiology , Shaw Potassium Channels/metabolism , Acoustic Stimulation , Action Potentials/drug effects , Analysis of Variance , Animals , Animals, Newborn , Drug Interactions , Female , Hydantoins/pharmacology , In Vitro Techniques , Male , Mice , Mice, Inbred CBA , Neurons/drug effects , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Pyridines/pharmacology , Tetraethylammonium/pharmacology , Time Factors
11.
Sci Rep ; 7(1): 17496, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235497

ABSTRACT

Higher stages of central auditory processing compensate for a loss of cochlear nerve synapses by increasing the gain on remaining afferent inputs, thereby restoring firing rate codes for rudimentary sound features. The benefits of this compensatory plasticity are limited, as the recovery of precise temporal coding is comparatively modest. We reasoned that persistent temporal coding deficits could be ameliorated through modulation of voltage-gated potassium (Kv) channels that regulate temporal firing patterns. Here, we characterize AUT00063, a pharmacological compound that modulates Kv3.1, a high-threshold channel expressed in fast-spiking neurons throughout the central auditory pathway. Patch clamp recordings from auditory brainstem neurons and in silico modeling revealed that application of AUT00063 reduced action potential timing variability and improved temporal coding precision. Systemic injections of AUT00063 in vivo improved auditory synchronization and supported more accurate decoding of temporal sound features in the inferior colliculus and auditory cortex in adult mice with a near-complete loss of auditory nerve afferent synapses in the contralateral ear. These findings suggest modulating Kv3.1 in central neurons could be a promising therapeutic approach to mitigate temporal processing deficits that commonly accompany aging, tinnitus, ototoxic drug exposure or noise damage.


Subject(s)
Auditory Perception/drug effects , Imidazoles/pharmacology , Membrane Transport Modulators/pharmacology , Mesencephalon/drug effects , Pyrimidines/pharmacology , Shaw Potassium Channels/metabolism , Vestibulocochlear Nerve Diseases/drug therapy , Action Potentials/drug effects , Animals , Auditory Pathways/drug effects , Auditory Pathways/injuries , Auditory Pathways/metabolism , Auditory Perception/physiology , Cochlear Nerve/injuries , Cochlear Nerve/metabolism , Compulsive Behavior , Disease Models, Animal , Mesencephalon/metabolism , Mice , Models, Biological , Neurons/drug effects , Neurons/metabolism , Ouabain , Recovery of Function/drug effects , Tissue Culture Techniques , Vestibulocochlear Nerve Diseases/metabolism
12.
J Neurophysiol ; 117(2): 756-766, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27881722

ABSTRACT

The medial nucleus of the trapezoid body (MNTB) is an important source of inhibition during the computation of sound location. It transmits fast and precisely timed action potentials at high frequencies; this requires an efficient calcium clearance mechanism, in which plasma membrane calcium ATPase 2 (PMCA2) is a key component. Deafwaddler (dfw2J ) mutant mice have a null mutation in PMCA2 causing deafness in homozygotes (dfw2J /dfw2J ) and high-frequency hearing loss in heterozygotes (+/dfw2J ). Despite the deafness phenotype, no significant differences in MNTB volume or cell number were observed in dfw2J homozygous mutants, suggesting that PMCA2 is not required for MNTB neuron survival. The MNTB tonotopic axis encodes high to low sound frequencies across the medial to lateral dimension. We discovered a cell size gradient along this axis: lateral neuronal somata are significantly larger than medially located somata. This size gradient is decreased in +/dfw2J and absent in dfw2J /dfw2J The lack of acoustically driven input suggests that sound-evoked activity is required for maintenance of the cell size gradient. This hypothesis was corroborated by selective elimination of auditory hair cell activity with either hair cell elimination in Pou4f3 DTR mice or inner ear tetrodotoxin (TTX) treatment. The change in soma size was reversible and recovered within 7 days of TTX treatment, suggesting that regulation of the gradient is dependent on synaptic activity and that these changes are plastic rather than permanent.NEW & NOTEWORTHY Neurons of the medial nucleus of the trapezoid body (MNTB) act as fast-spiking inhibitory interneurons within the auditory brain stem. The MNTB is topographically organized, with low sound frequencies encoded laterally and high frequencies medially. We discovered a cell size gradient along this axis: lateral neurons are larger than medial neurons. The absence of this gradient in deaf mice lacking plasma membrane calcium ATPase 2 suggests an activity-dependent, calcium-mediated mechanism that controls neuronal soma size.


Subject(s)
Cochlear Nucleus/pathology , Deafness/pathology , Deafness/physiopathology , Evoked Potentials, Auditory/physiology , Neurons/pathology , Sound , 2-Amino-5-phosphonovalerate/pharmacology , Animals , Deafness/genetics , Diphtheria Toxin/pharmacology , Evoked Potentials, Auditory/genetics , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Mice, Inbred CBA , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Mutation/genetics , Neurons/physiology , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasma Membrane Calcium-Transporting ATPases/metabolism , Presynaptic Terminals/physiology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Transcription Factor Brn-3C/genetics , Transcription Factor Brn-3C/metabolism
13.
J Physiol ; 594(13): 3683-703, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27104476

ABSTRACT

KEY POINTS: Lateral superior olive (LSO) principal neurons receive AMPA receptor (AMPAR) - and NMDA receptor (NMDAR)-mediated EPSCs and glycinergic IPSCs. Both EPSCs and IPSCs have slow kinetics in prehearing animals, which during developmental maturation accelerate to sub-millisecond decay time-constants. This correlates with a change in glutamate and glycine receptor subunit composition quantified via mRNA levels. The NMDAR-EPSCs accelerate over development to achieve decay time-constants of 2.5 ms. This is the fastest NMDAR-mediated EPSC reported. Acoustic trauma (AT, loud sounds) slow AMPAR-EPSC decay times, increasing GluA1 and decreasing GluA4 mRNA. Modelling of interaural intensity difference suggests that the increased EPSC duration after AT shifts interaural level difference to the right and compensates for hearing loss. Two months after AT the EPSC decay times recovered to control values. Synaptic transmission in the LSO matures by postnatal day 20, with EPSCs and IPSCs having fast kinetics. AT changes the AMPAR subunits expressed and slows the EPSC time-course at synapses in the central auditory system. ABSTRACT: Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage-clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub-millisecond time-constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)-EPSC decay τ accelerated from >40 ms in prehearing animals to 2.6 ± 0.4 ms in adults, as GluN2C expression increased. In vivo induction of AT at around P20 disrupted IPSC and EPSC integration in the LSO, so that 1 week later the AMPA receptor (AMPAR)-EPSC decay was slowed and mRNA for GluA1 increased while GluA4 decreased. In contrast, GlyR IPSC and NMDAR-EPSC decay times were unchanged. Computational modelling confirmed that matched IPSC and EPSC kinetics are required to generate mature interaural level difference functions, and that longer-lasting EPSCs compensate to maintain binaural function with raised auditory thresholds after AT. We conclude that LSO excitatory and inhibitory synaptic drive matures to identical time-courses, that AT changes synaptic AMPARs by expression of subunits with slow kinetics (which recover over 2 months) and that loud sounds reversibly modify excitatory synapses in the brain, changing synaptic function for several weeks after exposure.


Subject(s)
Acoustic Stimulation , Brain Stem/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Receptors, AMPA/physiology , Animals , Excitatory Postsynaptic Potentials , Female , Inhibitory Postsynaptic Potentials , Male , Mice, Inbred CBA , Protein Subunits/physiology
14.
Hear Res ; 319: 56-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25481823

ABSTRACT

CaV2.1 Ca(2+) channels play a key role in triggering neurotransmitter release and mediating synaptic transmission. Familial hemiplegic migraine type-1 (FHM-1) is caused by missense mutations in the CACNA1A gene that encodes the α1A pore-forming subunit of CaV2.1 Ca(2+) channels. We used knock-in (KI) transgenic mice harbouring the pathogenic FHM-1 mutation R192Q to study inhibitory and excitatory neurotransmission in the principle neurons of the lateral superior olive (LSO) in the auditory brainstem. We tested if the R192Q FHM-1 mutation differentially affects excitatory and inhibitory synaptic transmission, disturbing the normal balance between excitation and inhibition in this nucleus. Whole cell patch-clamp was used to measure neurotransmitter elicited excitatory (EPSCs) and inhibitory (IPSCs) postsynaptic currents in wild-type (WT) and R192Q KI mice. Our results showed that the FHM-1 mutation in CaV2.1 channels has multiple effects. Evoked EPSC amplitudes were smaller whereas evoked and miniature IPSC amplitudes were larger in R192Q KI compared to WT mice. In addition, in R192Q KI mice, the release probability was enhanced compared to WT, at both inhibitory (0.53 ± 0.02 vs. 0.44 ± 0.01, P = 2.10(-5), Student's t-test) and excitatory synapses (0.60 ± 0.03 vs. 0.45 ± 0.02, P = 4 10(-6), Student's t-test). Vesicle pool size was diminished in R192Q KI mice compared to WT mice (68 ± 6 vs 91 ± 7, P = 0.008, inhibitory; 104 ± 13 vs 335 ± 30, P = 10(-6), excitatory, Student's t-test). R192Q KI mice present enhanced short-term plasticity. Repetitive stimulation of the afferent axons caused short-term depression (STD) of E/IPSCs that recovered significantly faster in R192Q KI mice compared to WT. This supports the hypothesis of a gain-of-function of the CaV2.1 channels in R192Q KI mice, which alters the balance of excitatory/inhibitory inputs and could also have implications in the altered cortical excitability responsible for FHM pathology.


Subject(s)
Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Cerebellar Ataxia/genetics , Cerebellar Ataxia/metabolism , Migraine Disorders/genetics , Migraine Disorders/metabolism , Superior Olivary Complex/metabolism , Synaptic Transmission , Animals , Brain Stem/metabolism , Codon , Electrophysiology , Exons , Glutamine/chemistry , Glycine/chemistry , Mice , Mice, Transgenic , Mutation , Neuronal Plasticity , Neurons/metabolism , Neurotransmitter Agents/metabolism , Probability
15.
J Neurosci ; 33(21): 9113-21, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23699522

ABSTRACT

The central auditory brainstem provides an efferent projection known as the medial olivocochlear (MOC) system, which regulates the cochlear amplifier and mediates protection on exposure to loud sound. It arises from neurons of the ventral nucleus of the trapezoid body (VNTB), so control of neuronal excitability in this pathway has profound effects on hearing. The VNTB and the medial nucleus of the trapezoid body are the only sites of expression for the Kv2.2 voltage-gated potassium channel in the auditory brainstem, consistent with a specialized function of these channels. In the absence of unambiguous antagonists, we used recombinant and transgenic methods to examine how Kv2.2 contributes to MOC efferent function. Viral gene transfer of dominant-negative Kv2.2 in wild-type mice suppressed outward K(+) currents, increasing action potential (AP) half-width and reducing repetitive firing. Similarly, VNTB neurons from Kv2.2 knock-out mice (Kv2.2KO) also showed increased AP duration. Control experiments established that Kv2.2 was not expressed in the cochlea, so any changes in auditory function in the Kv2.2KO mouse must be of central origin. Further, in vivo recordings of auditory brainstem responses revealed that these Kv2.2KO mice were more susceptible to noise-induced hearing loss. We conclude that Kv2.2 regulates neuronal excitability in these brainstem nuclei by maintaining short APs and enhancing high-frequency firing. This safeguards efferent MOC firing during high-intensity sounds and is crucial in the mediation of protection after auditory overexposure.


Subject(s)
Auditory Pathways/physiology , Cochlea/physiology , Hearing Loss/prevention & control , Noise/adverse effects , Olivary Nucleus/physiology , Shab Potassium Channels/physiology , Action Potentials/drug effects , Action Potentials/genetics , Animals , Animals, Newborn , Cell Line, Tumor , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hearing Loss/etiology , In Vitro Techniques , Male , Mice , Mice, Inbred CBA , Mice, Transgenic , Mutation/genetics , Neuroblastoma/pathology , Patch-Clamp Techniques , Shab Potassium Channels/deficiency , Shaw Potassium Channels/metabolism , Transfection
16.
PLoS One ; 7(5): e35955, 2012.
Article in English | MEDLINE | ID: mdl-22570693

ABSTRACT

The dorsal cochlear nucleus (DCN) is a first relay of the central auditory system as well as a site for integration of multimodal information. Vesicular glutamate transporters VGLUT-1 and VGLUT-2 selectively package glutamate into synaptic vesicles and are found to have different patterns of organization in the DCN. Whereas auditory nerve fibers predominantly co-label with VGLUT-1, somatosensory inputs predominantly co-label with VGLUT-2. Here, we used retrograde and anterograde transport of fluorescent conjugated dextran amine (DA) to demonstrate that the lateral vestibular nucleus (LVN) exhibits ipsilateral projections to both fusiform and deep layers of the rat DCN. Stimulating the LVN induced glutamatergic synaptic currents in fusiform cells and granule cell interneurones. We combined the dextran amine neuronal tracing method with immunohistochemistry and showed that labeled projections from the LVN are co-labeled with VGLUT-2 by contrast to VGLUT-1. Wistar rats were exposed to a loud single tone (15 kHz, 110 dB SPL) for 6 hours. Five days after acoustic overexposure, the level of expression of VGLUT-1 in the DCN was decreased whereas the level of expression of VGLUT-2 in the DCN was increased including terminals originating from the LVN. VGLUT-2 mediated projections from the LVN to the DCN are likely to play a role in the head position in response to sound. Amplification of VGLUT-2 expression after acoustic overexposure could be a compensatory mechanism from vestibular inputs in response to hearing loss and to a decrease of VGLUT-1 expression from auditory nerve fibers.


Subject(s)
Acoustic Stimulation , Cell Surface Extensions/metabolism , Cochlear Nucleus/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Vestibular Nucleus, Lateral/metabolism , Animals , Cell Surface Extensions/genetics , Gene Expression , Gene Expression Regulation , Presynaptic Terminals/metabolism , Rats , Rats, Wistar , Synapses/genetics , Synapses/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Glutamate Transport Protein 2/genetics
17.
Proc Natl Acad Sci U S A ; 109(21): 8292-7, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22566618

ABSTRACT

Exposure to loud sound causes cochlear damage resulting in hearing loss and tinnitus. Tinnitus has been related to hyperactivity in the central auditory pathway occurring weeks after loud sound exposure. However, central excitability changes concomitant to hearing loss and preceding those periods of hyperactivity, remain poorly explored. Here we investigate mechanisms contributing to excitability changes in the dorsal cochlear nucleus (DCN) shortly after exposure to loud sound that produces hearing loss. We show that acoustic overexposure alters synaptic transmission originating from the auditory and the multisensory pathway within the DCN in different ways. A reduction in the number of myelinated auditory nerve fibers leads to a reduced maximal firing rate of DCN principal cells, which cannot be restored by increasing auditory nerve fiber recruitment. In contrast, a decreased membrane resistance of DCN granule cells (multisensory inputs) leads to a reduced maximal firing rate of DCN principal cells that is overcome when additional multisensory fibers are recruited. Furthermore, gain modulation by inhibitory synaptic transmission is disabled in both auditory and multisensory pathways. These cellular mechanisms that contribute to decreased cellular excitability in the central auditory pathway are likely to represent early neurobiological markers of hearing loss and may suggest interventions to delay or stop the development of hyperactivity that has been associated with tinnitus.


Subject(s)
Cochlear Nerve/physiopathology , Cochlear Nucleus/physiopathology , Hearing Loss, Noise-Induced/physiopathology , Tinnitus/physiopathology , Animals , Auditory Pathways/pathology , Auditory Pathways/physiopathology , Auditory Threshold/physiology , Cochlea/pathology , Cochlea/physiopathology , Cochlear Nerve/pathology , Cochlear Nucleus/pathology , Excitatory Postsynaptic Potentials/physiology , Hearing Loss, Noise-Induced/pathology , Humans , Inhibitory Postsynaptic Potentials/physiology , Nerve Fibers, Myelinated/pathology , Nerve Fibers, Myelinated/physiology , Neural Inhibition/physiology , Patch-Clamp Techniques , Rats , Rats, Wistar , Tinnitus/pathology
18.
Hear Res ; 283(1-2): 98-106, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22085487

ABSTRACT

Acoustic over-exposure (AOE) triggers deafness in animals and humans and provokes auditory nerve degeneration. Weeks after exposure there is an increase in the cellular excitability within the dorsal cochlear nucleus (DCN) and this is considered as a possible neural correlate of tinnitus. The origin of this DCN hyperactivity phenomenon is still unknown but it is associated with neurons lying within the fusiform cell layer. Here we investigated changes of excitability within identified fusiform cells following AOE. Wistar rats were exposed to a loud (110 dB SPL) single tone (14.8 kHz) for 4 h. Auditory brainstem response recordings performed 3-4 days after AOE showed that the hearing thresholds were significantly elevated by about 20-30 dB SPL for frequencies above 15 kHz. Control fusiform cells fired with a regular firing pattern as assessed by the coefficient of variation of the inter-spike interval distribution of 0.19 ± 0.11 (n = 5). Three to four days after AOE, 40% of fusiform cells exhibited irregular bursting discharge patterns (coefficient of variation of the inter-spike interval distribution of 1.8 ± 0.6, n = 5; p < 0.05). Additionally the maximal firing following step current injections was reduced in these cells (from 83 ± 11 Hz, n = 5 in unexposed condition to 43 ± 6 Hz, n = 5 after AOE) and this was accompanied by an increased firing gain (from 0.09 ± 0.01 Hz/pA, n = 5 in unexposed condition to 0.56 ± 0.25 Hz/pA, n = 5 after AOE). Current and voltage clamp recordings suggest that the presence of bursts in fusiform cells is related to a down regulation of high voltage activated potassium currents. In conclusion we showed that AOE triggers deafness at early stages and this is correlated with profound changes in the firing pattern and frequency of the DCN major output fusiform cells. The changes here described could represent the initial network imbalance prior to the emergence of tinnitus.


Subject(s)
Cochlear Nucleus/physiopathology , Hearing Loss, Noise-Induced/physiopathology , Noise/adverse effects , Tinnitus/physiopathology , Acoustic Stimulation , Animals , Auditory Threshold , Cochlear Nucleus/metabolism , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/metabolism , Membrane Potentials , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channels, Voltage-Gated/metabolism , Rats , Rats, Wistar , Time Factors , Tinnitus/etiology , Tinnitus/metabolism
19.
J Physiol ; 588(Pt 23): 4683-93, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20937712

ABSTRACT

There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current-voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem.


Subject(s)
Hearing Loss/etiology , Hyperbilirubinemia/complications , Hyperbilirubinemia/metabolism , Acute Disease , Animals , Female , Hyperbilirubinemia/chemically induced , Male , Neurons , Patch-Clamp Techniques , Rats , Rats, Gunn , Rats, Wistar , Signal Transduction , Sulfadimethoxine/toxicity
20.
Hear Res ; 270(1-2): 119-26, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20813177

ABSTRACT

We examined membrane properties and synaptic responses of neurons in the mouse lateral superior olivary nucleus (LSO). Two clear populations were identified consistent with: principal neurons which are involved in detecting interaural intensity differences (IIDs) and efferent neurons of the lateral olivocochlear (LOC) system which project to the cochlea. Principal neurons fired a short latency action potential (AP) often followed by an AP train during maintained depolarization. They possessed sustained outward K(+) currents, with little or no transient K(+) current (I(A)) and a prominent hyperpolarization-activated non-specific cation conductance, I(H). On depolarization, LOC neurons exhibited a characteristic delay to the first AP. These neurons possessed a prominent transient outward current I(A), but had no I(H). Both LOC and principal neurons received glutamatergic and glycinergic synaptic inputs. LOC synaptic responses decayed more slowly than those of principal neurons; the mean decay time constant of AMPA receptor-mediated EPSCs was around 1 ms in principal neurons and 4 ms in LOC neurons. Decay time constants for glycinergic IPSCs were around 5 ms in principal neurons and 10 ms in LOC neurons. We conclude that principal cells receive fast synaptic responses appropriate for integration of IID inputs, while the LOC cells possess excitatory and inhibitory receptors with much slower kinetics.


Subject(s)
Auditory Pathways/physiology , Cochlear Nerve/physiology , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Neurons/physiology , Olivary Nucleus/physiology , Animals , Auditory Pathways/cytology , Auditory Pathways/drug effects , Cochlear Nerve/cytology , Cochlear Nerve/drug effects , Cyclic Nucleotide-Gated Cation Channels/metabolism , Excitatory Postsynaptic Potentials/drug effects , Glutamic Acid/metabolism , Glycine/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Kinetics , Mice , Mice, Inbred CBA , Neurons/drug effects , Neurons, Efferent/physiology , Neurotransmitter Agents/pharmacology , Olivary Nucleus/cytology , Olivary Nucleus/drug effects , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channels/metabolism , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL
...