Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 13: 972158, 2022.
Article in English | MEDLINE | ID: mdl-36159923

ABSTRACT

Anxiety disorders are one of the most prevalent mood disorders that can lead to impaired quality of life. Current treatment of anxiety disorders has various adverse effects, safety concerns, or restricted efficacy; therefore, novel therapeutic targets need to be studied. Sex steroid hormones (SSHs) play a crucial role in the formation of brain structures, including regions of the limbic system and prefrontal cortex during perinatal development. In the brain, SSHs have activational and organizational effects mediated by either intracellular or transmembrane G-protein coupled receptors. During perinatal developmental periods, the physiological concentrations of SSHs lead to the normal development of the brain; however, the early hormonal dysregulation could result in various anxiety diorders later in life. Sex differences in the prevalence of anxiety disorders suggest that SSHs might be implicated in their development. In this review, we discuss preclinical and clinical studies regarding the role of dysregulated SSHs signaling during early brain development that modifies the risk for anxiety disorders in a sex-specific manner in adulthood. Moreover, our aim is to summarize potential molecular mechanisms by which the SSHs may affect anxiety disorders in preclinical research. Finally, the potential effects of SSHs in the treatment of anxiety disorders are discussed.

2.
Brain Sci ; 12(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35884680

ABSTRACT

Although autism spectrum disorder (ASD) is mainly characterized by developmental delay in social and communication skills, it has been shown that neuromotor deficits are an early component of ASD. The neuromotor development of B6.129-Shank3tm2Gfng/J (Shank3B−/−) mice as an animal model of autism has not been analyzed yet. The aim of this study was to compare the early neuromotor development of Shank3B−/− to wild-type mice. The mice underwent a multitude of neurodevelopmental tests and observations from postnatal day 1 (PND = 1) to weaning. Shank3B−/− mice opened their eyes later than their wild-type litter mates (p < 0.01). Shank3B−/− mice were also slower in the negative geotaxis test from PND = 13 to PND = 16 (p < 0.001) in both sexes. The results of this study indicate neurodevelopmental deficits in Shank3B−/− mice. The test is partially dependent on truncal motor control, and these lines of evidence suggest a phenotype of developmental hypotonia, which corresponds with the phenotypes seen in patients with Phelan-McDermid Syndrome. There was no observable effect of sex in any of the tests. There were no observed differences in upper and lower incisor eruption, ear unfolding, air righting, surface righting and ear twitch reflexes. Further studies should prove whether the delay in neuromotor development is linked to social or communication deficits, and thus, whether it may serve as an early indicator of autistic-like phenotype in mice.

3.
Front Neuroendocrinol ; 62: 100926, 2021 07.
Article in English | MEDLINE | ID: mdl-34089761

ABSTRACT

The sex steroid hormones (SSHs) play several roles in regulation of various processes in the cardiovascular, immune, muscular and neural systems. SSHs affect prenatal and postnatal development of various brain structures, including regions associated with important physiological, behavioral, cognitive, and emotional functions. This action can be mediated by either intracellular or transmembrane receptors. While the classical mechanisms of SSHs action are relatively well examined, the physiological importance of non-classical mechanism of SSHs action through membrane-associated and transmembrane receptors in the brain remains unclear. The most recent summary describing the role of SSHs in different body systems is lacking. Therefore, the aim of this review is to discuss classical and non-classical signaling pathways of testosterone and estradiol action via their receptors at functional, cellular, tissue level and to describe the effects on various body systems and behavior. Particular emphasis will be on brain regions including the hippocampus, hypothalamus, frontal cortex and cerebellum.


Subject(s)
Estradiol , Gonadal Steroid Hormones , Estrogens , Female , Humans , Hypothalamus , Pregnancy , Testosterone
4.
Sci Rep ; 9(1): 2253, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783175

ABSTRACT

The male accessory glands (AG) and gonoducts of moths develop during metamorphosis and are essential for successful fertilization of females. We found that these reproductive organs are innervated by a sex-specific cluster of peptidergic neurons in the posterior 9th neuromere of the terminal abdominal ganglion (TAG). This cluster of ~20 neurons differentiate during metamorphosis to innervate the accessory glands and sperm ducts. Using immunohistochemistry and in situ hybridization (ISH) we showed that these neurons express four neuropeptide precursors encoding calcitonin-like diuretic hormone (CT-DH), allatotropin (AT) and AT-like peptides (ATLI-III), allatostatin C (AST-C), and myoinhibitory peptides (MIPs). We used contraction bioassay in vitro to determine roles of these neuropeptides in the gonoduct and accessory gland activity. Spontaneous contractions of the seminal vesicle and AG were stimulated in a dose depended manner by CT-DH and AT, whereas AST-C and MIP elicited dose dependent inhibition. Using quantitative RT-PCR we confirmed expression of receptors for these neuropeptides in organs innervated by the male specific cluster of neurons. Our results suggest a role of these neuropeptides in regulation of seminal fluid movements during copulation.


Subject(s)
Bombyx/metabolism , Insect Hormones/metabolism , Insect Proteins/metabolism , Metamorphosis, Biological/physiology , Neurons/metabolism , Neuropeptides/metabolism , Sex Characteristics , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...