Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 14(1): 15421, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965297

ABSTRACT

Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as Dengue, Chikungunya and Zika, causing a major impact on global economic and public health. The main way to prevent these diseases is vector control, which is carried out through physical and biological methods, in addition to environmental management. Although chemical insecticides are the most effective strategy, they present some problems such as vector resistance and ecotoxicity. Recent research highlights the potential of the imidazolium salt "1-methyl-3-octadecylimidazolium chloride" (C18MImCl) as an innovative and environmentally friendly solution against Ae. aegypti. Despite its promising larvicidal activity, the mode of action of C18MImCl in mosquito cells and tissues remains unknown. This study aimed to investigate its impacts on Ae. aegypti larvae and three cell lines of Ae. aegypti and Ae. albopictus, comparing the cellular effects with those on human cells. Cell viability assays and histopathological analyses of treated larvae were conducted. Results revealed the imidazolium salt's high selectivity (> 254) for mosquito cells over human cells. After salt ingestion, the mechanism of larval death involves toxic effects on midgut cells. This research marks the first description of an imidazolium salt's action on mosquito cells and midgut tissues, showcasing its potential for the development of a selective and sustainable strategy for vector control.


Subject(s)
Aedes , Imidazoles , Insecticides , Larva , Aedes/drug effects , Animals , Larva/drug effects , Imidazoles/toxicity , Imidazoles/pharmacology , Insecticides/toxicity , Insecticides/pharmacology , Humans , Mosquito Vectors/drug effects , Cell Line , Cell Survival/drug effects , Mosquito Control/methods
2.
Acta Trop ; 230: 106395, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35278367

ABSTRACT

Piperine is an alkaloid extracted from the seed of Piper spp., which has demonstrated a larvicidal effect against Ae. aegypti. The incorporation of piperine into nanostructured systems can increase the effectiveness of this natural product in the control of Ae. aegypti larvae. In this study, we evaluated the effectiveness of piperine loaded or not into two nanostructured systems (named NS-A and NS-B) prepared by the nanoprecipitation method. The Ae. aegypti larvae were exposed to different concentrations of piperine loaded or not (2 to 16 ppm) and the mortality was investigated after 24, 48, and 72 hours. The nanostructures prepared were spherical in shape with narrow size distribution and great encapsulation efficiency. The lethal concentration 50 (LC50) for non-loaded piperine were 13.015 ppm (24 hours), 8.098 ppm (48 hours), and 7.248 ppm (72 hours). The LC50 values found for NS-A were 35.378 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours), whereas the values found for NS-B were 21.267 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours). Collectively, these findings suggested that non-loaded piperine caused higher larval mortality in the first hours of exposure while the nanostructured systems promoted the slow release of piperine and thereby increased the larvicidal activity over time. Therefore, loading piperine into nanostructured systems might be an effective tool to improve the larval control of vector Ae. aegypti.


Subject(s)
Aedes , Alkaloids , Insecticides , Nanostructures , Alkaloids/pharmacology , Animals , Benzodioxoles , Insecticides/pharmacology , Larva , Mosquito Vectors , Piperidines , Plant Extracts/chemistry , Polymers , Polyunsaturated Alkamides
3.
Sci Rep ; 11(1): 23027, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845279

ABSTRACT

Extreme conditions and the availability of determinate substrates in oil fields promote the growth of a specific microbiome. Sulfate-reducing bacteria (SRB) and acid-producing bacteria (APB) are usually found in these places and can harm important processes due to increases in corrosion rates, biofouling and reservoir biosouring. Biocides such as glutaraldehyde, dibromo-nitrilopropionamide (DBNPA), tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and alkyl dimethyl benzyl ammonium chloride (ADBAC) are commonly used in oil fields to mitigate uncontrolled microbial growth. The aim of this work was to evaluate the differences among microbiome compositions and their resistance to standard biocides in four different Brazilian produced water samples, two from a Southeast Brazil offshore oil field and two from different Northeast Brazil onshore oil fields. Microbiome evaluations were carried out through 16S rRNA amplicon sequencing. To evaluate the biocidal resistance, the Minimum Inhibitory Concentration (MIC) of the standard biocides were analyzed using enriched consortia of SRB and APB from the produced water samples. The data showed important differences in terms of taxonomy but similar functional characterization, indicating the high diversity of the microbiomes. The APB and SRB consortia demonstrated varying resistance levels against the biocides. These results will help to customize biocidal treatments in oil fields.


Subject(s)
Bacteria/genetics , Disinfectants/chemistry , Oil and Gas Fields , RNA, Ribosomal, 16S/genetics , Water Microbiology , Biodiversity , Biofilms/drug effects , Biofouling , Corrosion , Culture Media , Desulfovibrio/genetics , Environmental Microbiology , Geography , Glutaral/pharmacology , Microbial Sensitivity Tests , Microbiota/drug effects , Steel/chemistry , Sulfates , Water
4.
Acta Trop ; 221: 106014, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146537

ABSTRACT

The growth of resistance in vector mosquitoes to insecticides, especially the organophosphate Temephos can facilitate the transmission of various disease agents worldwide. Consequently, it arises a challenge to public health agencies, which is the urgency use of other possibilities as botanical insecticides. Such insecticides have specific properties against insects due to the plant's ability to synthesize products derived from its secondary metabolism. The diversity and complexity of active compounds of botanical insecticides can help reduce the selection of resistant individuals and consequently not change susceptibility. To corroborate this hypothesis, the aim of this study was to compare two populations of Aedes aegypti treated with Temephos and Copaifera oleoresin. Thus, Ae. aegypti larvae were exposed from (F1) up to tenth generation (F10) with sublethal doses (±LC25) of these products (Copaifera oleoresin: 40 mg/L and Temephos: 0.0030 mg/L). The triplicates and control groups were monitored every 48 hours and the surviving larvae were separated until the emergence of the adults. Each new population were then subjected to a series of concentrations (LC50 and LC95) of Temephos and Copaifera oleoresin to calculate the Resistance Ratio (RR) of each exposed generation. The population of Ae. aegypti exposed to Temephos had an increase in RR from 05 (considered low) to 13 (considered high). Those population exposed to Copaifera oleoresin, had no increasing in RR and continued susceptible to the oil in all generations. There was a significant difference in mortality between the generations exposed to the two products. The results presented here show that the change in the susceptibility status of Ae. aegypti population to Temephos was already expected. So, we believe that this work will be of great contribution to research related to mosquito control with plant products, and resistance to chemical insecticides.


Subject(s)
Aedes , Fabaceae , Insecticide Resistance , Insecticides , Plant Extracts/pharmacology , Aedes/drug effects , Animals , Fabaceae/chemistry , Insecticides/pharmacology , Larva/drug effects , Mosquito Vectors , Organophosphates/pharmacology , Temefos/pharmacology
5.
Parasit Vectors ; 13(1): 376, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32727530

ABSTRACT

The control of insects of medical importance, such as Aedes aegypti and Aedes albopictus are still the only effective way to prevent the transmission of diseases, such as dengue, chikungunya and Zika. Their control is performed mainly using chemical products; however, they often have low specificity to non-target organisms, including humans. Also, studies have reported resistance to the most commonly used insecticides, such as the organophosphate and pyrethroids. Biological control is an ecological and sustainable method since it has a slow rate of insect resistance development. Bacterial species of the genera Xenorhabdus and Photorhabdus have been the target of several research groups worldwide, aiming at their use in agricultural, pharmaceutical and industrial products. This review highlights articles referring to the use of Xenorhabdus and Photorhabdus for insects and especially for mosquito control proposing future ways for their biotechnological applicability. Approximately 24 species of Xenorhabdus and five species of Photorhabdus have been described to have insecticidal properties. These studies have shown genes that are capable of encoding low molecular weight proteins, secondary toxin complexes and metabolites with insecticide activities, as well as antibiotic, fungicidal and antiparasitic molecules. In addition, several species of Xenorhabdus and Photorhabdus showed insecticidal properties against mosquitoes. Therefore, these biological agents can be used in new control methods, and must be, urgently considered in short term, in studies and applications, especially in mosquito control.


Subject(s)
Aedes/microbiology , Mosquito Control/methods , Photorhabdus , Xenorhabdus , Aedes/virology , Animals , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Chikungunya Fever/prevention & control , Chikungunya Fever/transmission , Dengue/prevention & control , Dengue/transmission , Genes, Bacterial , Insecta/microbiology , Insecticides , Larva/microbiology , Larva/virology , Mosquito Vectors/microbiology , Pest Control, Biological/methods , Photorhabdus/genetics , Photorhabdus/metabolism , Photorhabdus/pathogenicity , Vector Borne Diseases/prevention & control , Vector Borne Diseases/transmission , Xenorhabdus/genetics , Xenorhabdus/metabolism , Xenorhabdus/pathogenicity , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
6.
Sci Rep ; 9(1): 16164, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700056

ABSTRACT

Mosquitoes are important vectors of pathogens due to their blood feeding behavior. Aedes aegypti (Diptera: Culicidae) transmits arboviruses, such as dengue, Zika, and Chikungunya. This species carries several bacteria that may be beneficial for its biological and physiological development. Therefore, studying the response of its microbiota to chemical products could result in vector control. Recently, imidazolium salts (IS) were identified as effective Ae. aegypti larvicides. Considering the importance of the mosquito microbiota, this study addressed the influence of IS on the bacteria of Ae. aegypti larvae. After exposition of larvae to different IS concentrations, the cultured microbiota was identified through culturomics and mass spectrometry, and the non-cultivated microbiota was characterized by molecular markers. In addition, the influence of the IS on axenic larvae was studied for comparison. There was an alteration in both cultivable species and in their diversity, including modifications in bacterial communities. The axenic larvae were less susceptible to the IS, which was increased after exposing these larvae to bacteria of laboratory breeding water. This highlights the importance of understanding the role of the larval microbiota of Ae. aegypti in the development of imidazolium salt-based larvicides. Such effect of IS towards microbiota of Ae. aegypti larvae, through their antimicrobial action, increases their larvicidal potential.


Subject(s)
Aedes/microbiology , Bacteria/growth & development , Gastrointestinal Microbiome/drug effects , Imidazoles/pharmacology , Insecticides/pharmacology , Animals , Bacteria/classification , Larva/microbiology
7.
Pest Manag Sci ; 74(4): 1013-1019, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29193680

ABSTRACT

BACKGROUND: Aedes aegypti is an important mosquito species that can transmit several arboviruses such as dengue fever, yellow fever, chikungunya and zika. Because these mosquitoes are becoming resistant to most chemical insecticides used around the world, studies with new larvicides should be prioritized. Based on the known biological profile of imidazolium salts (IS), the objective of this study was to evaluate the potential of six IS as larvicides against Ae. aegypti, as tested against Ae. aegypti larvae. Larval mortality was measured after 24 and 48 h, and residual larvicidal activity was also evaluated. RESULTS: Promising results were obtained with aqueous solutions of two IS: 1-n-octadecyl-3-methylimidazolium chloride (C18 MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16 MImMeS), showing up to 90% larval mortality after 48 h exposure. C18 MImCl was more effective than C16 mIMeS, causing mortality until day 15 after exposure. An application of C18 MImCl left to dry under ambient conditions for at least 2 months and then dissolved in water showed a more pronounced residual effect (36 days with 95% mortality and 80% mortality up to 78 days). CONCLUSION: This is the first study to show the potential of IS in the control of Ae. aegypti. Further studies are needed to understand the mode of action of these compounds in the biological development of this mosquito species. © 2017 Society of Chemical Industry.


Subject(s)
Aedes , Imidazoles , Insect Control , Insecticides , Mesylates , Aedes/growth & development , Animals , Larva/growth & development
8.
Braz. arch. biol. technol ; 60: e17160370, 2017. tab
Article in English | LILACS | ID: biblio-839076

ABSTRACT

ABSTRACT The microbial composition of different types,in ecosystems (including agro-ecosystems), has been investigated in a rapidly growing number of studies in the past few years. The importance of microorganisms, regarding the maintenance and stability of nutrients in agroecosystems, is a key to maintain the sustainability of a crop. Molecular tools to study microbial communities are possible through many methods such as RISA, DGGE, TGGE, clone libraries, T-RFLP, RAPD, SSCP and more recently NGS (Next-Generation Sequencing). DGGE is widely employed to characterize the diversity and the community dynamics of microorganisms in the environment, making possible to find out specific groups through functional genes, allowing access to data that cannot be obtained by cultural methods. The aim of this paper is to review the functional groups related to agroecosystems and to indicate the critical choice of DNA primers pairs and targeted DNA regions that may be used in PCR-based methods such as the DGGE technique in order to evaluate the microbial communities in a variety of environments.

9.
Braz. arch. biol. technol ; 58(1): 137-145, Jan-Feb/2015. graf
Article in English | LILACS | ID: lil-735814

ABSTRACT

This work presents bibliographic data on the role and function of microbial diversity. The increasing use of probiotics and prebiotics foods has led to the studies on their actual functions in the human body. It is known that in the environment, microorganisms are extremely important in recycling of nutrients, balance of trophic chains, vital physiological activities in the plants and animals, as well as the conservation of natural habitats. In human food, these microscopic organisms contribute from flavoring products to the synthesis of antimicrobial substances and vitamins essential to living beings.

SELECTION OF CITATIONS
SEARCH DETAIL