Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Genetics ; 222(2)2022 09 30.
Article in English | MEDLINE | ID: mdl-35946576

ABSTRACT

In Drosophila chromosomal rearrangements can be maintained and are associated with karyotypic variability among populations from different geographic localities. The abundance of variability in gene arrangements among chromosomal arms is even greater when comparing more distantly related species and the study of these chromosomal changes has provided insights into the evolutionary history of species in the genus. In addition, the sequencing of genomes of several Drosophila species has offered the opportunity to establish the global pattern of genomic evolution, at both genetic and chromosomal level. The combined approaches of comparative analysis of syntenic blocks and direct physical maps on polytene chromosomes have elucidated changes in the orientation of genomic sequences and the difference between heterochromatic and euchromatic regions. Unfortunately, the centromeric heterochromatic regions cannot be studied using the cytological maps of polytene chromosomes because they are underreplicated and therefore reside in the chromocenter. In Drosophila melanogaster, a cytological map of the heterochromatin has been elaborated using mitotic chromosomes from larval neuroblasts. In the current work, we have expanded on that mapping by producing cytological maps of the mitotic heterochromatin in an additional 10 sequenced Drosophila species. These maps highlight 2 apparently different paths, for the evolution of the pericentric heterochromatin between the subgenera Sophophora and Drosophila. One path leads toward a progressive complexity of the pericentric heterochromatin (Sophophora) and the other toward a progressive simplification (Drosophila). These maps are also useful for a better understanding how karyotypes have been altered by chromosome arm reshuffling during evolution.


Subject(s)
Drosophila Proteins , Heterochromatin , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Heterochromatin/genetics , Polytene Chromosomes
2.
Cells ; 11(3)2022 01 27.
Article in English | MEDLINE | ID: mdl-35159258

ABSTRACT

The zeppelin (zep) locus is known for its essential role in the development of the embryonic cuticle of Drosophila melanogaster. We show here that zep encodes Gfat1 (Glutamine: Fructose-6-Phosphate Aminotransferase 1; CG12449), the enzyme that catalyzes the rate-limiting step in the hexosamine biosynthesis pathway (HBP). This conserved pathway diverts 2%-5% of cellular glucose from glycolysis and is a nexus of sugar (fructose-6-phosphate), amino acid (glutamine), fatty acid [acetyl-coenzymeA (CoA)], and nucleotide/energy (UDP) metabolism. We also describe the isolation and characterization of lethal mutants in the euchromatic paralog, Gfat2 (CG1345), and demonstrate that ubiquitous expression of Gfat1+ or Gfat2+ transgenes can rescue lethal mutations in either gene. Gfat1 and Gfat2 show differences in mRNA and protein expression during embryogenesis and in essential tissue-specific requirements for Gfat1 and Gfat2, suggesting a degree of functional evolutionary divergence. An evolutionary, cytogenetic analysis of the two genes in six Drosophila species revealed Gfat2 to be located within euchromatin in all six species. Gfat1 localizes to heterochromatin in three melanogaster-group species, and to euchromatin in the more distantly related species. We have also found that the pattern of flanking-gene microsynteny is highly conserved for Gfat1 and somewhat less conserved for Gfat2.


Subject(s)
Drosophila melanogaster , Hexosamines , Animals , Biosynthetic Pathways/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Euchromatin , Glutamine/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism
3.
Proc Natl Acad Sci U S A ; 116(36): 17943-17950, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31399546

ABSTRACT

Previous studies have shown that heat shock stress may activate transposable elements (TEs) in Drosophila and other organisms. Such an effect depends on the disruption of a chaperone complex that is normally involved in biogenesis of Piwi-interacting RNAs (piRNAs), the largest class of germline-enriched small noncoding RNAs implicated in the epigenetic silencing of TEs. However, a satisfying picture of how chaperones could be involved in repressing TEs in germ cells is still unknown. Here we show that, in Drosophila, heat shock stress increases the expression of TEs at a posttranscriptional level by affecting piRNA biogenesis through the action of the inducible chaperone Hsp70. We found that stress-induced TE activation is triggered by an interaction of Hsp70 with the Hsc70-Hsp90 complex and other factors all involved in piRNA biogenesis in both ovaries and testes. Such interaction induces a displacement of all such factors to the lysosomes, resulting in a functional collapse of piRNA biogenesis. This mechanism has clear evolutionary implications. In the presence of drastic environmental changes, Hsp70 plays a key dual role in increasing both the survival probability of individuals and the genetic variability in their germ cells. The consequent increase of genetic variation in a population potentiates evolutionary plasticity and evolvability.


Subject(s)
DNA Transposable Elements , HSP70 Heat-Shock Proteins/metabolism , Stress, Physiological , Transcriptional Activation , Evolution, Molecular , Gene Silencing , Heat-Shock Response/genetics , Models, Biological , Protein Binding , RNA Interference
4.
Stress ; 21(6): 575-579, 2018 11.
Article in English | MEDLINE | ID: mdl-29996702

ABSTRACT

Transposable elements (TEs) are conserved mobile genetic elements that are highly abundant in most eukaryotic genomes. Although the exact function of TEs is still largely unknown, it is increasingly clear that they are significantly modulated in response to stress in a wide range of organisms, either directly or indirectly through regulation of epigenetic silencing. We investigated the effect of repeated restraint stress (2 h a day, for 5 d) on transcription levels of LINE-1 (L1) retrotransposon in the brain of inbred BALB/c, DBA/2, C57BL/6N, and outbred CD1 mice. Repeated restraint stress induced strain and brain region-specific modulation of L1 activity. We observed a significant derepression of L1 transcription in the hippocampus (HIPP) of BALB/c mice and a significant downregulation in the hippocampus of C57BL/6N mice. No significant change in L1 expression was found in the other strains and brain regions. These findings indicate in mice the control of transposons expression as an additional mechanism in stress-induced pathophysiological responses, demonstrating that their regulation is highly dependent on the strain genetic background and the brain region. Lay summary Hippocampal expression of the transposon L1 is significantly altered by repeated restraint stress in mice. L1 modulation is not only region specific, but also strain dependent, suggesting that the genetic background is an important determinant of L1 response to environmental stimuli.


Subject(s)
Brain/metabolism , DNA Transposable Elements/genetics , Long Interspersed Nucleotide Elements/genetics , Stress, Psychological/genetics , Amygdala/metabolism , Animals , Hippocampus/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Prefrontal Cortex/metabolism , Restraint, Physical , Stress, Psychological/metabolism
5.
Genetics ; 207(3): 949-959, 2017 11.
Article in English | MEDLINE | ID: mdl-28942425

ABSTRACT

The addition of a new telomere onto a chromosome break, a process termed healing, has been studied extensively in organisms that utilize telomerase to maintain their telomeres. In comparison, relatively little is known about how new telomeres are constructed on broken chromosomes in organisms that do not use telomerase. Chromosome healing was studied in somatic and germline cells of Drosophila melanogaster, a nontelomerase species. We observed, for the first time, that broken chromosomes can be healed in somatic cells. In addition, overexpression of the telomere cap component Hiphop increased the survival of somatic cells with broken chromosomes, while the cap component HP1 did not, and overexpression of the cap protein HOAP decreased their survival. In the male germline, Hiphop overexpression greatly increased the transmission of healed chromosomes. These results indicate that Hiphop can stimulate healing of a chromosome break. We suggest that this reflects a unique function of Hiphop: it is capable of seeding formation of a new telomeric cap on a chromosome end that lacks a telomere.


Subject(s)
Chromosome Breakage , Telomere/genetics , Animals , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Germ Cells/metabolism , Male
6.
Genetics ; 206(4): 1995-2006, 2017 08.
Article in English | MEDLINE | ID: mdl-28576865

ABSTRACT

One of the most fascinating scientific problems, and a subject of intense debate, is that of the mechanisms of biological evolution. In this context, Waddington elaborated the concepts of "canalization and assimilation" to explain how an apparently somatic variant induced by stress could become heritable through the germline in Drosophila He resolved this seemingly Lamarckian phenomenon by positing the existence of cryptic mutations that can be expressed and selected under stress. To investigate the relevance of such mechanisms, we performed experiments following the Waddington procedure, then isolated and fixed three phenotypic variants along with another induced mutation that was not preceded by any phenocopy. All the fixed mutations we looked at were actually generated de novo by DNA deletions or transposon insertions, highlighting a novel mechanism for the assimilation process. Our study shows that heat-shock stress produces both phenotypic variants and germline mutations, and suggests an alternative explanation to that of Waddington for the apparent assimilation of an acquired character. The selection of the variants, under stress, for a number of generations allows for the coselection of newly induced corresponding germline mutations, making the phenotypic variants appear heritable.


Subject(s)
Evolution, Molecular , Germ-Line Mutation , Models, Genetic , Selection, Genetic , Animals , DNA Transposable Elements/genetics , Drosophila/genetics , Heat-Shock Response , Mutation Rate , Phenotype
7.
PLoS One ; 10(3): e0120859, 2015.
Article in English | MEDLINE | ID: mdl-25826374

ABSTRACT

Pol32 is an accessory subunit of the replicative DNA Polymerase δ and of the translesion Polymerase ζ. Pol32 is involved in DNA replication, recombination and repair. Pol32's participation in high- and low-fidelity processes, together with the phenotypes arising from its disruption, imply multiple roles for this subunit within eukaryotic cells, not all of which have been fully elucidated. Using pol32 null mutants and two partial loss-of-function alleles pol32rd1 and pol32rds in Drosophila melanogaster, we show that Pol32 plays an essential role in promoting genome stability. Pol32 is essential to ensure DNA replication in early embryogenesis and it participates in the repair of mitotic chromosome breakage. In addition we found that pol32 mutants suppress position effect variegation, suggesting a role for Pol32 in chromatin architecture.


Subject(s)
Chromosomal Instability , DNA-Directed DNA Polymerase/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Alleles , Animals , Drosophila melanogaster/embryology , Female
8.
G3 (Bethesda) ; 4(9): 1709-16, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25053704

ABSTRACT

The dosage effect of Y-chromosome heterochromatin on suppression of position effect variegation (PEV) has long been well-known in Drosophila. The phenotypic effects of increasing the overall dosage of Y heterochromatin have also been demonstrated; hyperploidy of the Y chromosome produces male sterility and many somatic defects including variegation and abnormal legs and wings. This work addresses whether the suppression of position effect variegation (PEV) is a general feature of the heterochromatin (independent of the chromosome of origin) and whether a hyperdosage of heterochromatin can affect viability. The results show that the suppression of PEV is a general feature of any type of constitutive heterochromatin and that the intensity of suppression depends on its amount instead of some mappable factor on it. We also describe a clear dosage effect of Y heterochromatin on the viability of otherwise wild-type embryos and the modification of that effect by a specific gene mutation. Together, our results indicate that the correct balance between heterochromatin and euchromatin is essential for the normal genome expression and that this balance is genetically controlled.


Subject(s)
Drosophila/genetics , Heterochromatin/genetics , Animals , Euchromatin/genetics , Female , Male , X Chromosome , Y Chromosome
9.
Chromosoma ; 123(4): 345-54, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24752783

ABSTRACT

The mechanisms of biological evolution have always been, and still are, the subject of intense debate and modeling. One of the main problems is how the genetic variability is produced and maintained in order to make the organisms adaptable to environmental changes and therefore capable of evolving. In recent years, it has been reported that, in flies and plants, mutations in Hsp90 gene are capable to induce, with a low frequency, many different developmental abnormalities depending on the genetic backgrounds. This has suggested that the reduction of Hsp90 amount makes different development pathways more sensitive to hidden genetic variability. This suggestion revitalized a classical debate around the original Waddington hypothesis of canalization and genetic assimilation making Hsp90 the prototype of morphological capacitor. Other data have also suggested a different mechanism that revitalizes another classic debate about the response of genome to physiological and environmental stress put forward by Barbara McClintock. That data demonstrated that Hsp90 is involved in repression of transposon activity by playing a significant role in piwi-interacting RNA (piRNAs)-dependent RNA interference (RNAi) silencing. The important implication is that the fixed phenotypic abnormalities observed in Hsp90 mutants are probably related to de novo induced mutations by transposon activation. In this case, Hsp90 could be considered as a mutator. In the present theoretical paper, we discuss several possible implications about environmental stress, transposon, and evolution offering also a support to the concept of evolvability.


Subject(s)
DNA Transposable Elements/genetics , Environment , Inheritance Patterns/genetics , Animals , Biological Evolution , Phenotype , Stress, Physiological
10.
Cold Spring Harb Protoc ; 2011(9)2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21880821

ABSTRACT

Good mitotic chromosome preparations are essential for the immunolocalization of chromosomal proteins. Although methanol/acetic acid fixation techniques preserve chromosome morphology very well, they remove a substantial fraction of chromosomal proteins. We have developed fixation/immunostaining procedures, described here, that are suitable for the immunolocalization of proteinaceous components of metaphase chromosomes from larval Drosophila brain cells. These procedures result in good chromosomal quality with minimal removal of proteins.


Subject(s)
Chromosomes/chemistry , Chromosomes/immunology , Cytogenetic Analysis/methods , Drosophila/cytology , Immunohistochemistry/methods , Staining and Labeling/methods , Animals , Brain/cytology , Larva/cytology , Mitosis
11.
Fly (Austin) ; 4(4): 299-301, 2010.
Article in English | MEDLINE | ID: mdl-20855965

ABSTRACT

HP1 is a conserved prototype protein that plays an essential role in heterochromatin formation and epigenetic gene silencing through its interaction with histone methyltransferase enzymes (HMTases) and the histone H3 at lysine 9 (H3-MeK9). HP1 is also involved in telomere capping and, more surprisingly, in positive regulation of gene expression. Recently, a wide expression analysis, using a RIP-chip assays (RNA-immunoprecipitation on microarrays), has shown that HP1 associates with the transcripts of more than one hundred euchromatic genes and interacts with the heterogeneous nuclear ribonucleoproteins (hnRNPs) that are known to be involved in RNA processing. By these results, HP1 seems to be part of a complex that stabilizes RNA transcripts. Though previously unsuspected, it was also found that HP1-interacting hnRNPs have a functional role in heterochromatin formation. These proteins bind heterochromatin and are dominant suppressors of position effect variegation. Taken together, the results in the paper by Piacentini et al. open a window on a possible new conceptual landscape in which similar epigenetic mechanisms could have a significant role, both in the metabolism of RNA transcripts and in heterochromatin formation, producing opposite functional effects. These data seem to establish a functional link between euchromatin and heterochromatin.


Subject(s)
Chromosomal Proteins, Non-Histone/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gene Expression Regulation , Up-Regulation , Animals , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Euchromatin/genetics , Euchromatin/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/physiology , RNA, Messenger/metabolism
12.
Cold Spring Harb Protoc ; 2010(3): pdb.prot5389, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20194458

ABSTRACT

In this protocol, larval brains from Drosophila are incubated in vitro with colchicine, treated with hypotonic solution, fixed, and squashed in aceto-orcein. This procedure provides a large number of well-spread metaphase figures (200-400 per brain) that can be analyzed for chromosome morphology, the presence of chromosome aberrations, and the degree of ploidy.


Subject(s)
Chromosomes , Drosophila/cytology , Fluorescent Dyes , Mitosis , Oxazines , Staining and Labeling/methods , Animals , Brain/cytology , Larva/cytology
13.
Cold Spring Harb Protoc ; 2010(3): pdb.prot5390, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20194459

ABSTRACT

The classical chromosome-banding techniques developed for mammalian chromosomes do not differentiate the euchromatic arms of Drosophila mitotic chromosomes. However, some of these techniques produce a sharp and highly reproducible banding of Drosophila heterochromatin. For example, the use of quinacrine-, Hoechst-, and N-banding differentiates Drosophila heterochromatin into 61 cytological entities, allowing precise localization of heterochromatic breakpoints. These banding techniques can also be successfully used to differentiate mitotic heterochromatin of various Drosophila and mosquito species. Here we present protocols routinely used in our laboratories for chromosome banding, including the use of Hoechst, 4',6-diamidino-2-phenylindole (DAPI), quinacrine, and Giemsa stains.


Subject(s)
Chromosome Banding/methods , Chromosomes , Drosophila/cytology , Mitosis , Animals , Brain/cytology , Coloring Agents , Fluorescent Dyes , Larva/cytology
14.
Cold Spring Harb Protoc ; 2010(3): pdb.prot5391, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20194460

ABSTRACT

The fluorescent in situ hybridization (FISH) technique permits fine mapping of both middle and highly repetitive DNA sequences along Drosophila melanogaster heterochromatin. Best results are obtained when this technique is coupled with DAPI staining and digital recording of fluorescent signals. For example, if digital images of the FISH signals and DAPI fluorescence are detected separately using a charge-coupled device (CCD) camera, they can then be pseudocolored and merged using suitable computer programs. This allows precise overlapping of the DAPI banding (which is identical to the Hoechst 33258 banding) and the FISH signals, facilitating the assignment of the repetitive sequence under study to specific regions of the cytological map of D. melanogaster heterochromatin. This article describes FISH procedures that are routinely used with larval brain squashes, including preparation of slides, preparation of biotin- and digoxigenin-labeled probes, hybridization, and detection.


Subject(s)
Chromosomes , Drosophila melanogaster/cytology , In Situ Hybridization, Fluorescence/methods , Mitosis , Animals , Brain/cytology , Fluorescent Dyes , Indoles , Larva/cytology , Repetitive Sequences, Nucleic Acid , Staining and Labeling/methods
15.
Nature ; 463(7281): 662-5, 2010 Feb 04.
Article in English | MEDLINE | ID: mdl-20062045

ABSTRACT

The canalization concept describes the resistance of a developmental process to phenotypic variation, regardless of genetic and environmental perturbations, owing to the existence of buffering mechanisms. Severe perturbations, which overcome such buffering mechanisms, produce altered phenotypes that can be heritable and can themselves be canalized by a genetic assimilation process. An important implication of this concept is that the buffering mechanism could be genetically controlled. Recent studies on Hsp90, a protein involved in several cellular processes and development pathways, indicate that it is a possible molecular mechanism for canalization and genetic assimilation. In both flies and plants, mutations in the Hsp90-encoding gene induce a wide range of phenotypic abnormalities, which have been interpreted as an increased sensitivity of different developmental pathways to hidden genetic variability. Thus, Hsp90 chaperone machinery may be an evolutionarily conserved buffering mechanism of phenotypic variance, which provides the genetic material for natural selection. Here we offer an additional, perhaps alternative, explanation for proposals of a concrete mechanism underlying canalization. We show that, in Drosophila, functional alterations of Hsp90 affect the Piwi-interacting RNA (piRNA; a class of germ-line-specific small RNAs) silencing mechanism leading to transposon activation and the induction of morphological mutants. This indicates that Hsp90 mutations can generate new variation by transposon-mediated 'canonical' mutagenesis.


Subject(s)
DNA Transposable Elements/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genetic Variation/genetics , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Mutagenesis/genetics , Amino Acid Sequence , Animals , Benzoquinones/pharmacology , Blotting, Southern , Drosophila Proteins/genetics , Female , Gene Silencing/drug effects , Genotype , HSP90 Heat-Shock Proteins/genetics , Heat-Shock Proteins/genetics , Homozygote , Lactams, Macrocyclic/pharmacology , Male , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , Phenotype , Protein Kinases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription, Genetic/drug effects
16.
PLoS Genet ; 5(10): e1000670, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19798443

ABSTRACT

Heterochromatin Protein 1 (HP1a) is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases) methylate the histone H3 at lysine 9 (H3K9me), creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA-immunoprecipitation on microarrays), and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs) involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms have a significant role on both RNA and heterochromatin metabolisms.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Drosophila melanogaster/metabolism , Euchromatin/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , RNA/metabolism , Up-Regulation , Animals , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Drosophila melanogaster/chemistry , Drosophila melanogaster/genetics , Euchromatin/genetics , Gene Expression , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Protein Binding , RNA/chemistry , RNA/genetics , RNA Processing, Post-Transcriptional , RNA Stability
17.
Curr Opin Genet Dev ; 18(2): 169-74, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18329871

ABSTRACT

HP1 (heterochromatin protein 1) is a nonhistone chromosomal protein first discovered in Drosophila melanogaster because of its association with heterochromatin. Numerous studies have shown that such a protein plays a role in heterochromatin formation and gene silencing in many organisms, including fungi and animals. Cytogenetic and molecular studies, performed in Drosophila and other organisms, have revealed that HP1 associates with heterochromatin, telomeres and multiple euchromatic sites. There is increasing evidence that the different locations of HP1 are related to multiple different functions. In fact, recent work has shown that HP1 has a role not only in heterochromatin formation and gene silencing, but also in telomere stability and in positive regulation of gene expression.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Animals , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation , Heterochromatin/genetics , Humans , Telomere/genetics
18.
Chromosoma ; 117(1): 25-39, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17823810

ABSTRACT

In Drosophila, the Polycomb group and trithorax group proteins play a critical role in controlling the expression states of homeotic gene complexes during development. The common view is that these two classes of proteins bind to the homeotic complexes and regulate transcription at the level of chromatin. In the present work, we tested the involvement of both groups in mitotic heterochromatin formation in Drosophila. Using specific antibodies, we show that some of the tested Pc-G proteins are present in heterochromatin, while all the tested trx-G proteins localize to specific regions of heterochromatin in both mitotic chromosomes and interphase nuclei. We also observed that mutations in trx-G genes are recessive enhancers of position-effect variegation and are able to repress the transcription of heterochromatic genes. These results strongly suggest that trx-G proteins, along with some Pc-G proteins, play an active role in heterochromatin formation in Drosophila.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation , Heterochromatin/genetics , Mutation/genetics , Transcription Factors/metabolism , Animals , Blotting, Western , Brain/physiology , Cell Nucleus/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomes/genetics , DNA Primers , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/growth & development , Fluorescent Antibody Technique , Genes, Homeobox/physiology , Genes, Recessive , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Histones/metabolism , Interphase , Mitosis , Polycomb Repressive Complex 1 , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription, Genetic
19.
Gene ; 393(1-2): 1-10, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17343996

ABSTRACT

The realization of cross talks between transposable elements of class I and their host genome involves non-histonic chromatin proteins. These interactions have been widely analyzed through the characterization of the gypsy retrotransposon leader region, which holds a particularly strong insulator element, and the proteins required for its function, Su(Hw), Mod(mdg4), and Cp190. Here we provide evidence that a similar interaction should occur between ZAM, a gypsy-like element, and HP1, one of the most extensively studied chromatin proteins. We first assayed the existence of this binding using the yeast cells one-hybrid system and then we verified it in vivo by ChIP assay. In order to characterize the interaction between HP1 and the ZAM 5' untranslated region we performed a series of gel shift analyses. Our observations confirm an HP1 co-operative DNA-binding and display for the first time the HP1 DNA target motif that, we hypothesize, should be one of its nucleation sites.


Subject(s)
5' Untranslated Regions/genetics , 5' Untranslated Regions/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Animals , Base Sequence , Chromobox Protein Homolog 5 , Drosophila Proteins/metabolism , Models, Genetic , Molecular Sequence Data , Protein Binding , Retroelements/genetics , Tandem Repeat Sequences/genetics
20.
Genetics ; 173(3): 1433-45, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16648646

ABSTRACT

Centromeric heterochromatin comprises approximately 30% of the Drosophila melanogaster genome, forming a transcriptionally repressive environment that silences euchromatic genes juxtaposed nearby. Surprisingly, there are genes naturally resident in heterochromatin, which appear to require this environment for optimal activity. Here we report an evolutionary analysis of two genes, Dbp80 and RpL15, which are adjacent in proximal 3L heterochromatin of D. melanogaster. DmDbp80 is typical of previously described heterochromatic genes: large, with repetitive sequences in its many introns. In contrast, DmRpL15 is uncharacteristically small. The orthologs of these genes were examined in D. pseudoobscura and D. virilis. In situ hybridization and whole-genome assembly analysis show that these genes are adjacent, but not centromeric in the genome of D. pseudoobscura, while they are located on different chromosomal elements in D. virilis. Dbp80 gene organization differs dramatically among these species, while RpL15 structure is conserved. A bioinformatic analysis in five additional Drosophila species demonstrates active repositioning of these genes both within and between chromosomal elements. This study shows that Dbp80 and RpL15 can function in contrasting chromatin contexts on an evolutionary timescale. The complex history of these genes also provides unique insight into the dynamic nature of genome evolution.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Heterochromatin , Ribosomal Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , Chromosome Mapping , Cloning, Molecular , Conserved Sequence , Drosophila/metabolism , Drosophila/ultrastructure , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Evolution, Molecular , Molecular Sequence Data , Ribosomal Proteins/metabolism , Sequence Alignment , Species Specificity , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...