Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Parkinsons Dis ; 9(1): 144, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37852988

ABSTRACT

Loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and a profound reduction of striatal dopamine are two hallmarks of Parkinson's disease (PD). However, it's unclear whether degeneration starts at the neuronal soma or the striatal presynaptic terminals, and how microstructural degeneration is linked to dopaminergic loss is also uncertain. In this study, thirty de novo PD patients and twenty healthy subjects (HS) underwent 6-[18F]-fluoro-L-dopa (FDOPA) PET and MRI studies no later than 12 months from clinical diagnosis. FDOPA uptake rate (Ki), fractional volume of free-water (FW), and iron-sensitive R2* relaxometry were quantified within nigrostriatal regions. Inter-group differences (PD vs HS) were studied using non-parametric statistics and complemented with Cohen's d effect sizes and Bayesian statistics. Correlation analyses were performed exploring biomarker dependencies and their association with bradykinesia scores. PD patients exhibited a significant decline in nigrostriatal dopaminergic activity, being post-commissural putamen (-67%) and posterolateral SNc (-11.7%) the most affected subregions within striatum and SNc respectively. Microstructural alterations (FW) were restricted to the hemisphere corresponding to the most affected side and followed similar spatial gradients as FDOPA Ki (+20% in posterior putamen and +11% in posterolateral SNc). R2* revealed no relevant significant changes. FDOPA and FW were correlated within the posterolateral SNc, and clinical severity was associated with FDOPA Ki loss. The asymmetry between striatal and SNc changes for both dopaminergic depletion and microstructural degeneration biomarkers is consistent with a neurodegenerative process that begins in the striatal terminals before progressing toward the cell bodies in the SNc.

2.
Sci Rep ; 6: 31293, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27506835

ABSTRACT

Adolescence is a period of ongoing brain maturation characterized by hierarchical changes in the functional and structural networks. For this reason, the young brain is particularly vulnerable to the toxic effects of alcohol. Nowadays, binge drinking is a pattern of alcohol consumption increasingly prevalent among adolescents. The aim of the present study is to evaluate the evolution of the functional and anatomical connectivity of the Default Mode Network (DMN) in young binge drinkers along two years. Magnetoencephalography signal during eyes closed resting state as well as Diffusion Tensor Imaging (DTI) were acquired twice within a 2-year interval from 39 undergraduate students (22 controls, 17 binge drinkers) with neither personal nor family history of alcoholism. The group comparison showed that, after maintaining a binge drinking pattern along at least two years, binge drinkers displayed an increased brain connectivity of the DMN in comparison with the control group. On the other hand, the structural connectivity did not show significant differences neither between groups nor over the time. These findings point out that a continued pattern of binge drinking leads to functional alterations in the normal brain maturation process, even before anatomical changes can be detected.


Subject(s)
Binge Drinking/physiopathology , Brain Mapping , Brain/physiopathology , Diffusion Tensor Imaging , Adolescent , Alcohol Drinking , Brain/physiology , Case-Control Studies , Female , Follow-Up Studies , Humans , Magnetoencephalography , Male , Neural Pathways/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...