Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
J Hazard Mater ; 474: 134775, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38824772

ABSTRACT

High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs. This study examined ARB distribution in different agricultural soils with biogas slurry across 12 districts in China. It identified high-risk MDRB in various soil backgrounds, elucidating their resistance and spread mechanism. The findings revealed that diverse cultured ARB were enriched in soils with biogas slurry, especially soil ciprofloxacin ARB, which were enriched (>2.5 times) in 68.4 % of sampling sites. Four high-risk MDRB isolated from Hebei, Zhejiang, Shanxi, and Gansu districts were identified as severe or opportunistic pathogens, which carried abundant mobile genetic elements (MGEs) and 14 known high risk ARGs, including aac(3)-IId, aac(6')-Ib3, aph(6)-Id, aac(6')-Ib3, aadA1, blaOXA-10, blaTEM-1B, dfrA12, dfrA14, cmlA1, sul1, floR, tet(M) and tet(L). The antibiotics accumulation, diverse ARGs and MGEs enrichment, and proliferation of pathogenic bacteria could be potential driving factors of their occurrence and spread. Therefore, the coexistence of the high-risk MDRB and ARGs combined with the associated MGEs in soils with biogas slurry should be further investigated to develop technology and policy for reducing their negative influences on the effectiveness of clinical antibiotics.


Subject(s)
Agriculture , Bacteria , Biofuels , Soil Microbiology , China , Bacteria/genetics , Bacteria/drug effects , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
2.
PLoS One ; 19(5): e0302937, 2024.
Article in English | MEDLINE | ID: mdl-38753637

ABSTRACT

With increasing global awareness of soil health, attention must be paid to fluorine exposure in soils, which poses a threat to human health. Therefore, this study aimed to study the fluorine adsorption characteristics of swine manure and straw biochars and their impact on fluorine adsorption-desorption in soil with batch experiments. The biochar samples originated from high-temperature anaerobic cracking of swine manure (350°C, 500°C, and 650°C) and straw (500°C). Results indicated that the adsorption of soil fluorine reached adsorption equilibrium at around 4 h after the mixing of swine manure and straw biochar. Fluorine adsorption kinetics using these biochars conformed to the quasi-two-stage kinetic model. The fluorine adsorption kinetics for biochar-treated soils conformed to the double-constant equation and the Elovich equation, and the soil treated with straw biochar showed the fastest fluorine adsorption rate. The adsorption isotherms of fluorine for biochars and biochar-treated soils could be fitted by the isothermal adsorption model of Langmuir and Freundlich. The maximal equilibrium quantity of fluorine was 73.66 mg/g for swine manure biochar. The soil, adding with 2% of swine manure biochar achieved with showed at 650°C had the smallest adsorption. This study also shows that the adsorption of fluorine by biochar gradually decreased with the increase of pH. Comparing with other factors, the mixture pH with biochars added had a significant effect on fluorine adsorption. The decreased fluorine adsorption capacities for soils treated with swine manure and straw biochars were closely related to the increased pH in soils after adding biochars. Considering the fluorine threat in soil, this study provides a theoretical basis for the application of biochars on soil fluorine adsorption.


Subject(s)
Charcoal , Fluorine , Manure , Soil , Manure/analysis , Charcoal/chemistry , Fluorine/chemistry , Animals , Adsorption , Soil/chemistry , Swine , Kinetics , Hydrogen-Ion Concentration , Soil Pollutants/chemistry
3.
Immun Inflamm Dis ; 12(3): e1191, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38477658

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) represents a major cause of heart failure and a large medical burden worldwide. This study screened the potentially regulatory targets of DCM and analyzed their roles in high glucose (HG)-induced cardiomyocyte injury. METHODS: Through GEO database, we obtained rat DCM expression chips and screened differentially expressed genes. Rat cardiomyocytes (H9C2) were induced with HG. 3-hydroxy-3-methylglutarylcoenzyme A synthase 2 (Hmgcs2) and microRNA (miR)-363-5p expression patterns in cells were measured by real-time quantitative polymerase chain reaction or Western blot assay, with the dual-luciferase assay to analyze their binding relationship. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, lactate dehydrogenase assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, enzyme-linked immunosorbent assay, and various assay kits were applied to evaluate cell viability, cytotoxicity, apoptosis, inflammation responses, and oxidative burden. RESULTS: Hmgcs2 was the vital hub gene in DCM. Hmgcs2 was upregulated in HG-induced cardiomyocytes. Hmgcs2 downregulation increased cell viability, decreased TUNEL-positive cell number, reduced HG-induced inflammation and oxidative stress. miR-363-5p is the upstream miRNA of Hmgcs2. miR-363-5p overexpression attenuated HG-induced cell injury. CONCLUSIONS: Hmgcs2 had the most critical regulatory role in DCM. We for the first time reported that miR-363-5p inhibited Hmgcs2 expression, thereby alleviating HG-induced cardiomyocyte injury.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , MicroRNAs , Animals , Rats , Myocytes, Cardiac , Inflammation , Glucose
4.
Front Plant Sci ; 15: 1359911, 2024.
Article in English | MEDLINE | ID: mdl-38501139

ABSTRACT

Using swine manure biochar and biogas slurry in agriculture proves to be an effective strategy for soil improvement and fertilization. In this study, a pot trial on the growth of lotus root was conducted to investigate the persistent effects of applying 350°C swine manure biochar (1% and 2%) and biogas slurry (50% and 100%) on soil nitrogen nutrient and lotus root quality. The results showed that compared to chemical fertilizer alone (A0B0), swine manure biochar significantly increased soil nitrogen content after one year of application. The contents of total nitrogen (TN), alkali-hydrolyzed nitrogen (AHN), ammonium nitrogen (NH4 +-N), and nitrate nitrogen (NO3- -N) increased by 17.96% to 20.73%, 14.05% to 64.71%, 17.76% to 48.68% and 2.22% to 8.47%, respectively, during the rooting period. When swine manure biochar was present, the application of biogas slurry further elevated soil nitrogen content. The co-application of swine manure biochar and biogas slurry significantly increased soil nitrogen content, and the 100% nitrogen replacement with biogas slurry combined with 2% swine manure biochar (A2B2) treatment exhibited the most significant enhancement effect during whole plant growth periods. Soil enzyme activities, including soil protease (NPT), leucine aminopeptidase (LAP), b-glucosidase (ß-GC) and dehydrogenase (DHA), showed a tendency to increase and then decrease with the prolongation of lotus root fertility period, reaching the maximum value during the rooting period. Compared to A0B0, the treatment with 2% swine manure biochar had the most significant effect on enzyme activities and increased the lotus root's protein, soluble sugar, and starch contents. Nitrate content decreased with the application of 2% swine manure biochar as the amount of biogas slurry increased. In conclusion, swine manure biochar effectively improved soil nitrogen content, enzyme activity, and lotus root quality. Even after one year of application, 2% swine manure biochar had the best enhancement effect.

5.
J Cancer Res Ther ; 19(6): 1646-1653, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38156933

ABSTRACT

BACKGROUND: Ferroptosis is a novel subtype of programmed cell death caused by iron-dependent lipid peroxidation and excessive reactive oxygen species (ROS) production. Small-molecule ferroptotic drugs have the probability of selectively targeting the specific features of aggressive tumor cells. In particular, pseudolaric acid B (PAB) triggered ferroptosisin breast cancer cells. The aim of this study is to explore the antitumor effect of PAB on A549 cells and provide a theoretical basis for the further development and clinical application of PAB. METHODS: First, relevant databases were used to predict of target genes related to PAB, Then, EdU proliferation assay, colony formation and wound-healing assays were applied to calculate A549 cells proliferative abilities. Measurement of ferrous iron, lipid peroxidation, ROS, malondialdehyde (MDA) and glutathione (GSH) were utilized to explore the relevant mechanism. RESULTS: We showed that PAB decreased the viability of lung adenocarcinoma cells in vitro, which was accompanied by abnormally elevated levels of intracellular ferrous iron and overproduction of lipid reactive oxidate species (L-ROS). In turn, deferoxamine (DFO) significantly rescued PAB-induced lipid peroxidation. PAB also improved the intracellular labile iron pool by promoting ferritin autophagy via the upregulation of the nuclear receptor coactivator 4 (NCOA4). Moreover, silencing of NCOA4 alleviated PAB-inducedferroptotic death and reduced the levels of intracellular ferrous iron. CONCLUSIONS: In summary, PAB-triggered ferroptosis in lung adenocarcinoma cells by enhancing ferritinophagy. thus, PAB is a potential therapeutic agent for lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Ferroptosis , Humans , Reactive Oxygen Species/metabolism , Iron/metabolism , Autophagy , Transcription Factors/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Nuclear Receptor Coactivators/metabolism
6.
RSC Adv ; 13(7): 4407-4421, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760305

ABSTRACT

Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation.

7.
Biomed Res Int ; 2022: 1254824, 2022.
Article in English | MEDLINE | ID: mdl-35127936

ABSTRACT

BACKGROUND: This study was designed to investigate differences in biochemical parameters between mouse and humans after paraquat (PQ) poisoning and develop a suitable animal model for studying organ damage after PQ poisoning. The prognostic factors of PQ-poisoned patients were further analyzed. METHODS: Thirty C57BL/6J mice were randomly divided into five groups (control, sham, and 3 PQ doses), and the mouse model was established by intragastric administration of PQ. Physiological indexes such as the body weight, mental state, and mortality rate were observed. Biochemical parameters were analyzed 24 h after PQ poisoning. We also performed a retrospective analysis of clinical data from 29 patients with PQ poisoning admitted to the Emergency Department of the Affiliated Hospital of Taishan Medical College between April 2016 and February 2018. Biochemical parameters were compared between the mouse model and patients with PQ poisoning. RESULTS: In the PQ poisoning mouse model, the lethal dose group PQ360 showed remarkable increases in serum levels of potassium (K+), carbon dioxide (CO2), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) compared with the nonlethal dose PQ100 and PQ200 groups. The biochemical results of the patients showed that K+ and Cl- levels were significantly reduced in the death group compared to the survival group. Levels of ALT, AST, blood urea nitrogen (BUN), and amylase were higher, and the neutrophil-to-lymphocyte ratio (NLR) was increased in the death group compared with the survival group. CONCLUSIONS: The combination of age, PQ dosage, K+, Cl-, BUN, ALT, AST, amylase, and NLR can be used to more accurately predict the outcome of patients with PQ poisoning. C57 mice are an appropriate animal model to study liver and kidney functions following PQ exposure.


Subject(s)
Paraquat , Poisoning , Amylases , Animals , Humans , Mice , Mice, Inbred C57BL , Prognosis , Retrospective Studies
8.
Front Bioeng Biotechnol ; 9: 728530, 2021.
Article in English | MEDLINE | ID: mdl-34621730

ABSTRACT

Animal-manure biochar used as a sustainable amendment to garden soil has been widely applied, and the animal-manure pyrolysis temperatures would also have a regulatory effect on soil functions because of their affections on biochar physio-chemical properties. Here we studied the effects of different dosages of swine-manure biochar on tea garden soil functions, with the swine-manure pyrolysis temperature differed at 350 and 500°C. The results showed that the improvement of soil microbial biomass carbon and nitrogen and enzyme activities was closely related to the addition of 0.5-2% (biochar wt/soil wt) swine-manure biochar. Under different conditions of different carbon application rates and carbon type, the addition of 2% swine-manure biochar pyrolyzed at 350°C showed the best effects on soil enzyme activities and microbial biomass carbon and nitrogen contents. Compared to the control, after the addition of 2% swine-manure biochar, sucrase, phosphatase, catalase, and urease activities increased by 63.3, 23.2, 50.3, and 27.9%, respectively. Microbial biomass carbon and nitrogen contents also increased by 36.4 and 34.3%, respectively. Our study indicated that the effectiveness of using animal-manure swine-manure biochar as a sustainable amendment to soil would provide evidence of tea garden soil improvement and the environmental response to the usage of biochars.

9.
Sci Total Environ ; 759: 143473, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33203566

ABSTRACT

Animal manures are commonly applied to soil which possibly promote the spread of antibiotic resistance from soil to human beings via food chains. Biogas slurry is an end product of anaerobic digestion of animal manures, which has been widely applied as fertilizers in the agricultural soil. However, effect of long-term biogas slurry application on the soil antibiotic resistance and the associated mechanism still remains unclear. The present study characterized antibiotics, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community, in different agricultural soils unamended (BS-) and amended (BS+) with biogas slurry (8-18 years) in five field experiments. Our results indicated that long-term application of biogas slurry largely increased the concentrations of tetracyclines in soils, and greatly increased the abundances of ARGs, transposase gene (Tn916/1545) and ARGs-associated bacteria. Long-term application of biogas slurry led to tetracyclines accumulation and ARGs enrichment in agricultural soil, and the selection pressure from tetracyclines and the increase of Tn916/1545 abundace become potential contributors for the increase of soil antibiotic resistance via promoting the enrichment of ARG-associated bacteria. The results of the present study should be taken into consideration to develop policy and practice for mitigating the enrichment and spread of antibiotic resistance during the recycling of biogas slurry into agricultural soil.


Subject(s)
Biofuels , Soil , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Humans , Manure , Soil Microbiology
10.
Sci Total Environ ; 737: 140285, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32783862

ABSTRACT

In current study, the UASB reactor was enhanced by nitrogen-doped sewage sludge based activated carbon supported Fe3O4 (Fe3O4/N-SBAC) for coal gasification wastewater treatment. The results showed that COD removal efficiency was increased to 64.4% with Fe3O4/N-SBAC assistance and the corresponding methane production rate achieved up to 1093.6 mL/d. Fe3O4/N-SBAC promoted microbial growth and enzymatic activity, leading to high extracellular polymeric substances and coenzyme F420 concentrations. Fe3O4/N-SBAC also facilitated the sludge granulation process with high particle size, substantial interspecific signal molecules and low diffusible signal factor. Microbial community analysis revealed that Fe3O4/N-SBAC might support direct interspecies electron transfer process, in which the enriched Geobacter was likely to communicate with Methanothrix via electrical connection, improving anaerobic degradation of coal gasification wastewater. Total phenols shock and pH impact revealed that reactor stability was enhanced in the Fe3O4/N-SBAC-supplemented system.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Bioreactors , Charcoal , Coal/analysis , Ferrosoferric Oxide , Nitrogen , Waste Disposal, Fluid
11.
Sci Total Environ ; 674: 374-382, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31005839

ABSTRACT

In this study, an internal circulation-anoxic/aerobic (IC-A/O) process followed by ultrafiltration (UF) and reverse osmosis (RO) system was applied for paper wastewater reclamation. The IC-AO system presented a stable and efficient performance, achieving high removal of chemical oxygen demand (COD), total organic carbon (TOC) and total nitrogen (TN) with methane production rate of 132.8 mL/d. Acute toxicity to Daphnia magna (D. magna) was reduced significantly (83.2%) and the spearman's rank correlation analysis indicated that the toxicity of effluents from each reactor were positively correlated with COD and TOC. Hexadecanoic acid, octadecanoic acid and benzophenone were the main toxic contributors for biological effluent. Microbial community revealed that Anaerolinea was significantly related with organic pollutants. The UF-RO system further removed pollutants and toxicity with the final effluent COD, TOC, ammonium nitrogen (NH4+-N) and TN of 32.6, 18.8, 0.3 and 9.2 mg/L, respectively, which proved that it was feasible for paper wastewater reuse. This study presented an efficient, practical and environmentally competitive system, and paved a foundation for the treatment and reuse of paper wastewater.


Subject(s)
Waste Disposal, Fluid/methods , Water Microbiology , Water Pollutants, Chemical/analysis , Animals , Biological Oxygen Demand Analysis , Bioreactors , Daphnia , Filtration , Industrial Waste/analysis , Membranes, Artificial , Nitrogen , Paper , Ultrafiltration , Wastewater , Water Purification/methods
12.
Environ Geochem Health ; 41(1): 267-274, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30073447

ABSTRACT

The phenanthrene (PHE) adsorption on soils from the Yangtze River Delta region under different pH and temperature conditions was studied in the laboratory. Results showed that the sorption of PHE on all soils was nonlinear and fitted to the Freundlich isotherm. The PHE adsorption on the soils is related to the content of organic carbons and the environmental conditions. There was a positive correlation (the correlation coefficient was 0.956) between the PHE adsorption and the soil organic carbon content. Adsorption on the soils at 15 °C ambient temperature was higher than at 25 °C, which was related to PHE solubility enthalpy. Adsorption on the soils in background solution at pH 5.0 was higher than in those at pH 6.2 and 7.5, which may be related to alteration of the hydrophobic character of humic substances. This study showed that intrinsic organic carbons influenced the adsorption of PHE, which was affected by environmental conditions, such as pH and temperature. Therefore, the characteristics of soil organic carbon should be considered first for implementing effective schemes for the remediation of contaminated soils and in the formulation of soil environmental quality standards.


Subject(s)
Phenanthrenes/chemistry , Rivers , Soil Pollutants/chemistry , Soil/chemistry , Temperature , Adsorption , China , Humic Substances , Hydrogen-Ion Concentration , Solubility
13.
Environ Geochem Health ; 41(1): 43-52, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29948534

ABSTRACT

Cadmium (Cd)-contaminated rice (Oryza sativa) in Southern China is a great threat to food security, and the paddy soil remediation is urgently needed to reduce Cd accumulation in rice. Application of biochar could effectively immobilize soil Cd and reduce Cd uptake by rice. Fields that were applied with soil treatments including control and 15 and 30 t ha-1 each hickory nut shell-derived biochar (KC) or maize straw-derived biochar (MC), and grown with two rice varieties (hybrid rice and late japonica rice) were selected for this study. The long-term effect of biochars on decreasing Cd bioavailability in paddy soils was evaluated. The results showed when MC was applied at 15 t ha-1, DTPA-Cd (soil cadmium extracted by diethylenetriamine pentaacetic acid) was reduced by 20.0 and 34.5% in Field A (slightly Cd pollution) and B (moderately Cd pollution), respectively. In Field B, soil DTPA-Cd concentrations with application of 30 t ha-1 biochars were all lower than that of 15 t ha-1 biochar, but there were no significant differences between the two types of biochars. Cd concentration in rice grains and straws of hybrid rice are two times more than those of late japonica rice. Cd bio-concentration factor both of grains and straw was significantly increased by biochar application, which in Field A was higher than that in Field B. Our results suggest that biochars reduce Cd accumulation in rice grains by immobilizing soil Cd. KC has a higher potential in lowering Cd bioavailability than MC. Hybrid rice should be prohibited to cultivate in these areas.


Subject(s)
Cadmium/analysis , Charcoal/chemistry , Environmental Pollution/analysis , Oryza/chemistry , Biological Availability , China , Mining , Plant Structures/chemistry , Soil/chemistry , Soil Pollutants/analysis , Tungsten/chemistry , Zea mays
14.
3 Biotech ; 8(7): 305, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30002995

ABSTRACT

In this paper, the effects of erythorbic acid (EA) treatment with different concentrations on the quality of Grifola frondosa fruiting bodies stored at 4 °C for 27 days were studied by determining the changes in moisture content, weight loss, browning, electrolyte leakage, malondialdehyde (MDA), and nutritional compounds. The activities of polyphenoloxidase (PPO), cellulase and other antioxidant enzymes including superoxide dismutase (SOD), catalase, and peroxidase (POD) were also measured. Results showed that 0.1% EA-treated G. frondosa fruiting body maintained lower weight loss (< 6.0%, w/w), electrolyte leakage (< 45.8%), MDA (< 4.17 µmol kg-1), and higher moisture content (> 90.7%, w/w). Lower activities of PPO (< 72.64 × 103 U kg-1) and cellulase (< 189.86 × 103 U kg-1) in 0.1% EA-treated samples were observed compared with the other treatments. As a stereoisomer of ascorbic acid (AA), EA also could enhance SOD and POD activities of G. frondosa fruiting bodies. Our findings were the first time to evaluate the effect of EA on maintaining quality in G. frondosa fruiting bodies, and proved that low concentrations of EA (especially 0.1% EA, w/v) treatments were beneficial to preserve G. frondosa fruiting body with even higher efficiency than AA treatment. This study paved a foundation for the enhancement of quality retention of G. frondosa fruiting bodies.

15.
Int J Biol Macromol ; 109: 1270-1279, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29175163

ABSTRACT

The thermostable fungus, Thermoascus aurantiacus M-2, which produces a novel acidophilic and thermostable xylanase was isolated and identified based on its morphology and comparison of the internal transcribed spacer rDNA gene sequence. The culture conditions and components of medium were optimized for T. aurantiacus M-2 to produce xylanase. T. aurantiacus M-2 produced xylanase at a maximum level of 39.07 U/mL after 8-d fermentation at 45 °C in the optimized medium. The purified xylanase produced by T. aurantiacus M-2 has a relative molecular mass of approximately 31.0 kD. The characteristics of purified xylanase were investigated. The purified T. aurantiacus xylanase exhibited maximum activity at 75 °C and pH 5.0, and it was stable after treatment at a pH range from 2.0 to 10.0 or a temperature range from 30 °C to 80 °C for 2-h. Mn2+ and Ag+ enhanced xylanase activity to 120.0% and 119.6%, respectively, while Mn2+ had the highest inhibition ratio, with a residual activity of 20.7%. This study provided a foundation for scaled-up production and application of xylanase.


Subject(s)
Endo-1,4-beta Xylanases/biosynthesis , Endo-1,4-beta Xylanases/chemistry , Thermoascus/enzymology , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/isolation & purification , Enzyme Activation , Enzyme Stability , Fermentation , Hydrogen-Ion Concentration , Nitrogen/metabolism , Phenotype , Substrate Specificity , Temperature , Thermoascus/genetics , Thermoascus/growth & development
16.
Int J Biol Macromol ; 106: 302-311, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28827135

ABSTRACT

Yarrowia lipolytica Wt-11 producing an extracellular lipase was isolated and identified. To improve the lipase production, Y. lipolytica Wt-11 was subjected to low-energy ion implantation mutation breeding, and a best mutant, Y. lipolytica Mut-96, was obtained after screening. Under the optimal cultivation conditions, the scaled-up production of lipases were performed, and the lipase activity of Y. lipolytica Mut-96 was enhanced nearly 5.5-fold compared with that of Y. lipolytica Wt-11. After fermentation, the lipases were purified, and the characteristics of the purified lipases were studied. The optimum temperatures and pHs for lipases from Wt-11and Mut-96 were 30°C and 8.0, respectively. The purified lipases were stable between pH 7.0 and 8.5 and unstable at temperatures above 40°C. The lipase activities were enhanced by Ca2+, Ba2+, Mn2+, Fe2+ and SDS. The synthesis of L-ascorbyl palmitate via esterification with L-ascorbic acid and palmitic acid by immobilized lipases from Wt-11 and Mut-96 in organic media was investigated, and the L-ascorbyl palmitate can be respectively produced at levels of 14.8 and 27.5g/L.


Subject(s)
Ascorbic Acid/analogs & derivatives , Culture Media/chemistry , Fungal Proteins/metabolism , Lipase/metabolism , Mutation , Yarrowia/metabolism , Ascorbic Acid/biosynthesis , Ascorbic Acid/genetics , Culture Media/pharmacology , Enzyme Stability , Fermentation , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Expression , Hydrogen-Ion Concentration , Kinetics , Lipase/biosynthesis , Lipase/genetics , Temperature , Yarrowia/drug effects
17.
3 Biotech ; 7(5): 309, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28955606

ABSTRACT

Pseudomonas monteilii PL5 (PL5) was newly isolated from soil sample and was identified by 16S rDNA sequence analysis. The strain PL5 had a high potential to degrade pyrene (PYR) in both liquid solution and soil and was able to degrade 51.8% of PYR at 25 °C and pH 7.0 condition within 10 days. At 25 °C, the ability of strain PL5 to degrade PYR at different pH values followed the following order pH 6.0 > pH 7.0 > pH 8.0 > pH 9.0. Degradation of total PYR was 56.5 and 51.8% after 10 days at pH 6.0 and 7.0 with PYR half-lives of 8.8 and 9.2 days, respectively. The ability of strain PL5 degraded PYR under different temperatures was 35 > 25 > 15 °C at pH 6.0. Among the tested soils contaminated by PYR, the best degradation of PYR by strain PL5 occurred in paddy soil where the degradation was 57.5% after 10 days, and the half-life of PYR was reduced 19-fold in the presence of strain PL5. This study suggested that P. monteilii PL5 could be used for the bioremediation of the contaminated soil and water through the degradation of PYR.

18.
Int J Biol Macromol ; 104(Pt A): 1238-1245, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28673841

ABSTRACT

In this study, two synthesized cutinase genes from Fusarium solani and Aspergillus fumigatus were expressed in Pichia pastoris X33. The characteristics of these two cutinases were investigated and compared. The results indicated that F. solani and A. fumigatus cutinases hydrolyzed p-nitrophenyl substrates with different carbon chain lengths. A. fumigatus cutinase predominately hydrolyzed p-nitrophenyl butyrate, but F. solani cutinase preferred p-nitrophenyl decanoate. The abilities of polymer synthesis and bioplastic degradation were tested and compared between F. solani and A. fumigatus cutinases. The results showed that F. solani cutinase had degradation ability on poly(ε-caprolactone) (PCL) and synthesized polymer with a molecular weight (MW) of 2300 in organic solvent. However, A. fumigatus cutinase completely degraded PCL and synthesized molecules with a MW of 25,000, suggesting that A. fumigatus cutinase has more promising applications.


Subject(s)
Aspergillus fumigatus/enzymology , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Fusarium/enzymology , Amino Acid Sequence , Aspergillus fumigatus/genetics , Biocatalysis , Carboxylic Ester Hydrolases/genetics , Cloning, Molecular , Enzyme Stability , Fusarium/genetics , Hydrogen-Ion Concentration , Models, Molecular , Polyesters/metabolism , Protein Structure, Secondary , Substrate Specificity , Temperature
19.
3 Biotech ; 7(1): 56, 2017 May.
Article in English | MEDLINE | ID: mdl-28444597

ABSTRACT

In the current study, the PL7 strain was isolated from soil and identified as Raoultella planticola based on its physiological characteristics and 16S rDNA sequence. By the 10th day, the PL7 strain degraded 52.0% of the pyrene (PYR) content and 50.8% of the benzo[a]pyrene (BaP) content in 20 mg L-1 PYR and 10 mg L-1 BaP in the liquid matrix. The half-life of PYR and BaP by PL7 degradation was 8.59 and 9.46 days, respectively. At pH 8.0, the degradation rates of PYR and BaP by PL7 were significantly higher at 30 °C than at 20 and 40 °C. The degradation ability of PL7 differed in red soil, paddy soil and fluvo-aquic soil; red soil produced the fastest degradation rates. The half-life of PYR and BaP by PL7 degradation in red soil was 21.7 and 11.9 days, respectively; however, without PL7 the half-life of PYR in red soil was 91.2 days. This study demonstrated the significant potential of the PL7 strain for bioremediation applications in the liquid matrix and soil contaminated by PAHs.

20.
Bosn J Basic Med Sci ; 16(3): 227-31, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27186973

ABSTRACT

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease which may cause complications such as hepatic dysfunction and injury. As an important antioxidant, reduced glutathione (GSH) has been reported protecting against hepatic injury induced by some diseases, but the role of GSH in pSS is poorly understood. This study aims at investigating the role of GSH in hepatic injury during pSS. A murine model of pSS, non-obese diabetic (NOD) mice, was used for GSH administration via tail intravenous injection. Enzyme-linked immunosorbent assay (ELISA) was performed to detect serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as the levels of GSH, tumor necrosis factor, interleukin (IL) 10, integrin alpha M, IL1B, malondialdehyde, nicotinamide adenine dinucleotide phosphate oxidase 4, and superoxide dismutases in hepatocyte homogenates. Hematoxylin-eosin staining was performed to observe hepatic histology. The results showed that serum AST and ALT levels were up-regulated in the NOD mice (p = 0.0021 and 0.0048), but were significantly recovered after the GSH administration (p = 0.0081 and 0.0263). The NOD mice exhibited disturbed hepatic tissue structure, which was attenuated by GSH. The GSH administration could also promote the production of GSH in the hepatocytes (p = 0.0264), and control the levels of inflammatory factors and oxidative stress-related factors. These results indicate that GSH has significant effects on protecting against the hepatic injury during pSS, which may be associated with its regulation of the inflammatory factors and oxidative stress-related factors. This study suggests that GSH is a promising therapeutic strategy for controlling hepatic injury during pSS and offers valuable information for further research.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Glutathione/pharmacology , Sjogren's Syndrome/prevention & control , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cytokines/biosynthesis , Disease Models, Animal , Glutathione/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL