Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nat Metab ; 4(1): 60-75, 2022 01.
Article in English | MEDLINE | ID: mdl-35102341

ABSTRACT

Fatty liver disease (FLD) is a growing health issue with burdening unmet clinical needs. FLD has a genetic component but, despite the common variants already identified, there is still a missing heritability component. Using a candidate gene approach, we identify a locus (rs71519934) at the Pleckstrin and Sec7 domain-containing 3 (PSD3) gene resulting in a leucine to threonine substitution at position 186 of the protein (L186T) that reduces susceptibility to the entire spectrum of FLD in individuals at risk. PSD3 downregulation by short interfering RNA reduces intracellular lipid content in primary human hepatocytes cultured in two and three dimensions, and in human and rodent hepatoma cells. Consistent with this, Psd3 downregulation by antisense oligonucleotides in vivo protects against FLD in mice fed a non-alcoholic steatohepatitis-inducing diet. Thus, translating these results to humans, PSD3 downregulation might be a future therapeutic option for treating FLD.


Subject(s)
Disease Susceptibility , Fatty Liver/etiology , Fatty Liver/metabolism , Gene Expression Regulation , Guanine Nucleotide Exchange Factors/genetics , Alleles , Animals , Biomarkers , Cell Line , Fatty Liver/pathology , Gene Expression Profiling , Genetic Variation , Genotype , Guanine Nucleotide Exchange Factors/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/pathology , Mice , Polymorphism, Single Nucleotide , RNA-Seq , Ribonucleases
2.
Article in English | MEDLINE | ID: mdl-33513444

ABSTRACT

Human membrane bound O-acyltransferase domain-containing 7 (MBOAT7), also known as lysophosphatidylinositol acyltransferase 1 (LPIAT1), is an enzyme involved in the acyl-chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 rs641738 variant has been associated with the entire spectrum of fatty liver disease (FLD) and neurodevelopmental disorders, but the exact enzymatic activity and the catalytic site of the protein are still unestablished. Human wild type MBOAT7 and three MBOAT7 mutants missing in the putative catalytic residues (N321A, H356A, N321A + H356A) were produced into Pichia pastoris, and purified using Ni-affinity chromatography. The enzymatic activity of MBOAT7 wild type and mutants was assessed measuring the incorporation of radiolabeled fatty acids into lipid acceptors. MBOAT7 preferentially transferred 20:4 and 20:5 polyunsaturated fatty acids (PUFAs) to lysophosphatidylinositol (LPI). On the contrary, MBOAT7 showed weak enzymatic activity for transferring saturated and unsaturated fatty acids, regardless the lipid substrate. Missense mutations in the putative catalytic residues (N321A, H356A, N321A + H356A) result in a loss of O-acyltransferase activity. Thus, MBOAT7 catalyzes the transfer of PUFAs to lipid acceptors. MBOAT7 shows the highest affinity for LPI, and missense mutations at the MBOAT7 putative catalytic dyad inhibit the O-acyltransferase activity of the protein. Our findings support the hypothesis that the association between the MBOAT7 rs641738 variant and the increased risk of NAFLD is mediated by changes in the hepatic phosphatidylinositol acyl-chain remodeling. Taken together, the increased knowledge of the enzymatic activity of MBOAT7 gives insights into the understanding on the basis of FLD.


Subject(s)
Acyltransferases/chemistry , Fatty Acids, Unsaturated/chemistry , Lysophospholipids/chemistry , Membrane Proteins/chemistry , Acyltransferases/genetics , Acyltransferases/metabolism , Amino Acid Substitution , Fatty Acids, Unsaturated/genetics , Humans , Lysophospholipids/genetics , Lysophospholipids/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation, Missense , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
Cells ; 9(10)2020 10 07.
Article in English | MEDLINE | ID: mdl-33036387

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging worldwide epidemics, projected to become the leading cause of liver transplants. The strongest genetic risk factor for NAFLD/NASH susceptibility and progression is a single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 gene (PNPLA3), rs738409, encoding the missense mutation I148M. This aminoacidic substitution interferes with the normal remodeling of lipid droplets in hepatocytes. It is also thought to play a key role in promoting liver fibrosis by inhibiting the release of retinol from hepatic stellate cells. Reducing PNPLA3 levels in individuals homozygous for 148M may be an effective treatment for the entire spectrum of NAFLD, based on gene dosage analysis in the human population, as well as the protective effect of another naturally occurring SNP (rs2294918) in PNPLA3 which, when co-inherited, reduces PNPLA3 mRNA levels to 50% and counteracts disease risk. By screening a clinical compound library targeting specific signaling pathways active in primary human hepatocytes, we identified momelotinib, a drug evaluated in clinical trials to treat myelofibrosis, as a potent down-regulator of PNPLA3 expression, across all genotypes. We found that momelotinib treatment yielded >80% reduction in PNPLA3 mRNA in human primary hepatocytes and stellate cells, as well as in vivo via acute and chronic treatment of WT mice. Using a human multilineage 3D spheroid model of NASH homozygous for the PNPLA3 mutant protein, we additionally show that it decreases PNPLA3 mRNA as well as intracellular lipid content. Furthermore, we show that the effects on PNPLA3 coincide with changes in chromatin accessibility within regulatory regions of the PNPLA3 locus, consistent with inhibition occurring at the level of transcription. In addition to its primary reported targets, the JAK kinases, momelotinib inhibits several non-JAK kinases, including ACVR1. Using a combination of targeted siRNA knockdowns and signaling pathway perturbations, we show that momelotinib reduces the expression of the PNPLA3 gene largely through the inhibition of BMP signaling rather than the JAK/STAT pathway. Overall, our work identified momelotinib as a potential NASH therapeutic and uncovered previously unrecognized connections between signaling pathways and PNPLA3. These pathways may be exploited by drug modalities to "tune down" the level of gene expression, and therefore offer a potential therapeutic benefit to a high at-risk subset of NAFLD/NASH patients.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Phospholipases A2, Calcium-Independent/metabolism , Animals , Humans , Male , Mice , Signal Transduction , Transfection
4.
Gut ; 69(10): 1855-1866, 2020 10.
Article in English | MEDLINE | ID: mdl-32001554

ABSTRACT

OBJECTIVE: Efforts to manage non-alcoholic fatty liver disease (NAFLD) are limited by the incomplete understanding of the pathogenic mechanisms and the absence of accurate non-invasive biomarkers. The aim of this study was to identify novel NAFLD therapeutic targets andbiomarkers by conducting liver transcriptomic analysis in patients stratified by the presence of the PNPLA3 I148M genetic risk variant. DESIGN: We sequenced the hepatic transcriptome of 125 obese individuals. 'Severe NAFLD' was defined as the presence of steatohepatitis, NAFLD activity score ≥4 or fibrosis stage ≥2. The circulating levels of the most upregulated transcript, interleukin-32 (IL32), were measured by ELISA. RESULTS: Carriage of the PNPLA3 I148M variant correlated with the two major components of hepatic transcriptome variability and broadly influenced gene expression. In patients with severe NAFLD, there was an upregulation of inflammatory and lipid metabolism pathways. IL32 was the most robustly upregulated gene in the severe NAFLD group (adjusted p=1×10-6), and its expression correlated with steatosis severity, both in I148M variant carriers and non-carriers. In 77 severely obese, and in a replication cohort of 160 individuals evaluated at the hepatology service, circulating IL32 levels were associated with both NAFLD and severe NAFLD independently of aminotransferases (p<0.01 for both). A linear combination of IL32-ALT-AST showed a better performance than ALT-AST alone in NAFLD diagnosis (area under the curve=0.92 vs 0.81, p=5×10-5). CONCLUSION: Hepatic IL32 is overexpressed in NAFLD, correlates with hepatic fat and liver damage, and is detectable in the circulation, where it is independently associated with the presence and severity of NAFLD.


Subject(s)
Gene Expression Profiling/methods , Interleukins/metabolism , Lipase/genetics , Liver/metabolism , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease , Adult , Biomarkers/metabolism , Disease Progression , Drug Discovery , Female , Genetic Predisposition to Disease , Humans , Male , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Polymorphism, Single Nucleotide , Severity of Illness Index , Up-Regulation
5.
Sci Rep ; 9(1): 11585, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406127

ABSTRACT

There is a high unmet need for developing treatments for nonalcoholic fatty liver disease (NAFLD), for which there are no approved drugs today. Here, we used a human in vitro disease model to understand mechanisms linked to genetic risk variants associated with NAFLD. The model is based on 3D spheroids from primary human hepatocytes from five different donors. Across these donors, we observed highly reproducible differences in the extent of steatosis induction, demonstrating that inter-donor variability is reflected in the in vitro model. Importantly, our data indicates that the genetic variant TM6SF2 E167K, previously associated with increased risk for NAFLD, induces increased hepatocyte fat content by reducing APOB particle secretion. Finally, differences in gene expression pathways involved in cholesterol, fatty acid and glucose metabolism between wild type and TM6SF2 E167K mutation carriers (N = 125) were confirmed in the in vitro model. Our data suggest that the 3D in vitro spheroids can be used to investigate the mechanisms underlying the association of human genetic variants associated with NAFLD. This model may also be suitable to discover new treatments against NAFLD.


Subject(s)
Apolipoproteins B/metabolism , Lipids/biosynthesis , Membrane Proteins/genetics , Mutation , Humans
6.
J Struct Biol ; 206(3): 349-360, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30959108

ABSTRACT

Membrane bound O-acyltransferase domain- containing 7 (MBOAT7, also known as LPIAT1) is a protein involved in the acyl chain remodeling of phospholipids via the Lands' cycle. The MBOAT7 is a susceptibility risk genetic locus for non-alcoholic fatty liver disease (NAFLD) and mental retardation. Although it has been shown that MBOAT7 is associated to membranes, the MBOAT7 topology remains unknown. To solve the topological organization of MBOAT7, we performed: A) solubilization of the total membrane fraction of cells overexpressing the recombinant MBOAT7-V5, which revealed MBOAT7 is an integral protein strongly attached to endomembranes; B) in silico analysis by using 22 computational methods, which predicted the number and localization of transmembrane domains of MBOAT7 with a range between 5 and 12; C) in vitro analysis of living cells transfected with GFP-tagged MBOAT7 full length and truncated forms, using a combination of Western Blotting, co-immunofluorescence and Fluorescence Protease Protection (FPP) assay; D) in vitro analysis of living cells transfected with FLAG-tagged MBOAT7 full length forms, using a combination of Western Blotting, selective membrane permeabilization followed by indirect immunofluorescence. All together, these data revealed that MBOAT7 is a multispanning transmembrane protein with six transmembrane domains. Based on our model, the predicted catalytic dyad of the protein, composed of the conserved asparagine in position 321 (Asn-321) and the preserved histidine in position 356 (His-356), has a lumenal localization. These data are compatible with the role of MBOAT7 in remodeling the acyl chain composition of endomembranes.


Subject(s)
Acyltransferases/ultrastructure , Cell Membrane/ultrastructure , Membrane Proteins/ultrastructure , Recombinant Proteins/ultrastructure , Acyltransferases/genetics , Cell Membrane/chemistry , Cell Membrane/genetics , Computer Simulation , Gene Expression Regulation , Humans , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Protein Domains/genetics , Recombinant Proteins/genetics
7.
Int J Mol Sci ; 20(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30986904

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in western countries. Despite the high prevalence of NAFLD, the underlying biology of the disease progression is not clear, and there are no approved drugs to treat non-alcoholic steatohepatitis (NASH), the most advanced form of the disease. Thus, there is an urgent need for developing advanced in vitro human cellular systems to study disease mechanisms and drug responses. We attempted to create an organoid system genetically predisposed to NAFLD and to induce steatosis and fibrosis in it by adding free fatty acids. We used multilineage 3D spheroids composed by hepatocytes (HepG2) and hepatic stellate cells (LX-2) with a physiological ratio (24:1). HepG2 and LX-2 cells are homozygotes for the PNPLA3 I148M sequence variant, the strongest genetic determinant of NAFLD. We demonstrate that hepatic stellate cells facilitate the compactness of 3D spheroids. Then, we show that the spheroids develop accumulations of fat and collagen upon exposure to free fatty acids. Finally, this accumulation was rescued by incubating spheroids with liraglutide or elafibranor, drugs that are in clinical trials for the treatment of NASH. In conclusion, we have established a simple, easy to handle, in vitro model of genetically induced NAFLD consisting of multilineage 3D spheroids. This tool may be used to understand molecular mechanisms involved in the early stages of fibrogenesis induced by lipid accumulation. Moreover, it may be used to identify new compounds to treat NASH using high-throughput drug screening.


Subject(s)
Cell Lineage , Liver Cirrhosis/pathology , Models, Biological , Spheroids, Cellular/pathology , Apolipoproteins B/metabolism , Chalcones/pharmacology , Coculture Techniques , Collagen Type I/metabolism , Fatty Acids/metabolism , Hep G2 Cells , Humans , Liraglutide/pharmacology , Liver Cirrhosis/prevention & control , Propionates/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
8.
Mol Metab ; 22: 49-61, 2019 04.
Article in English | MEDLINE | ID: mdl-30772256

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) is becoming a leading cause of advanced chronic liver disease. The progression of NAFLD, including nonalcoholic steatohepatitis (NASH), has a strong genetic component, and the most robust contributor is the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 encoding the 148M protein sequence variant. We hypothesized that suppressing the expression of the PNPLA3 148M mutant protein would exert a beneficial effect on the entire spectrum of NAFLD. METHODS: We examined the effects of liver-targeted GalNAc3-conjugated antisense oligonucleotide (ASO)-mediated silencing of Pnpla3 in a knock-in mouse model in which we introduced the human PNPLA3 I148M mutation. RESULTS: ASO-mediated silencing of Pnpla3 reduced liver steatosis (p = 0.038) in homozygous Pnpla3 148M/M knock-in mutant mice but not in wild-type littermates fed a steatogenic high-sucrose diet. In mice fed a NASH-inducing diet, ASO-mediated silencing of Pnpla3 reduced liver steatosis score and NAFLD activity score independent of the Pnpla3 genotype, while reductions in liver inflammation score (p = 0.018) and fibrosis stage (p = 0.031) were observed only in the Pnpla3 knock-in 148M/M mutant mice. These responses were accompanied by reduced liver levels of Mcp1 (p = 0.026) and Timp2 (p = 0.007) specifically in the mutant knock-in mice. This may reduce levels of chemokine attracting inflammatory cells and increase the collagenolytic activity during tissue regeneration. CONCLUSION: This study provides the first evidence that a Pnpla3 ASO therapy can improve all features of NAFLD, including liver fibrosis, and suppress the expression of a strong innate genetic risk factor, Pnpla3 148M, which may open up a precision medicine approach in NASH.


Subject(s)
Lipase/genetics , Liver Cirrhosis/genetics , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Oligonucleotides, Antisense/genetics , Phospholipases A2, Calcium-Independent/genetics , Animals , Female , Gene Silencing , Humans , Lipase/metabolism , Liver Cirrhosis/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Oligonucleotides, Antisense/metabolism , Phospholipases A2, Calcium-Independent/metabolism
9.
Atherosclerosis ; 282: 45-51, 2019 03.
Article in English | MEDLINE | ID: mdl-30685441

ABSTRACT

BACKGROUND AND AIMS: Type I hyperlipoproteinemia is an autosomal recessive disorder of lipoprotein metabolism caused by mutations in the LPL gene, with an estimated prevalence in the general population of 1 in a million. In this work, we studied the molecular mechanism of two known mutations in the LPL gene in ex vivo and in vitro experiments and also the effect of two splice site mutations in ex vivo experiments. METHODS: Two patients with hypertriglyceridemia were selected from the Lipid Clinic in Vienna. The first patient was compound heterozygote for c.680T > C (exon 5; p.V200A) and c.1139+1G > A (intron 7 splice site). The second patient was compound heterozygote for c.953A > G (exon 6; p.N291S) and c.1019-3C > A (intron 6 splice site). The LPL gene was sequenced and post-heparin plasma samples (ex vivo) were used to test LPL activity. In vitro experiments were performed in HEK 293T/17 cells transiently transfected with wild type or mutant LPL plasmids. Cell lysate and media were used to evaluate LPL production, secretion, activity and dimerization by Western blot analysis and LPL enzymatic assay, respectively. RESULTS: Our data show that in both patients, LPL activity is absent. V200A is a mutation that alters LPL secretion and activity whereas the N291S mutation affects LPL activity, but both mutations do not affect dimerization. The effect of these mutations in patients is more severe since they have splice site mutations on the other allele. CONCLUSIONS: We characterized these LPL mutations at the molecular level showing that are pathogenic.


Subject(s)
Hyperlipoproteinemia Type I/enzymology , Hyperlipoproteinemia Type I/genetics , Lipoprotein Lipase/deficiency , Lipoprotein Lipase/genetics , Mutation, Missense , Adult , HEK293 Cells , Heterozygote , Humans , Hyperlipoproteinemia Type I/blood , Hypertriglyceridemia , Male , Mutagenesis, Site-Directed , Pedigree , Phenotype , Protein Multimerization , Sequence Analysis, DNA
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(6): 900-906, 2019 06.
Article in English | MEDLINE | ID: mdl-29935383

ABSTRACT

The human patatin-like phospholipase domain-containing 3 (PNPLA3) gene encodes for a protein of 481 amino-acids. The variant rs738409 is a cytosine to guanine substitution, encoding for the isoleucine to methionine substitution at position 148 (I148M) of the protein. This variant is strongly associated with the entire spectrum of liver disease. Although this variant is one of the best characterized and deeply studied, the mechanism behind the PNPLA3 and the liver disease is still not well defined. Functionally, it has become clear that the PNPLA3 protein is an enzyme with lipase activity towards triglycerides and retinyl esters, and acyltransferase activity on phospholipids. The aim of this review is to collect the latest data, obtained by in vitro and in vivo experiments, on the functional aspects of the PNPLA3 protein. Defining the precise role of PNPLA3 in the liver lipid metabolism, in order to develop novel therapies for the treatment of liver disease, will be the key of future research.


Subject(s)
Lipase/metabolism , Membrane Proteins/metabolism , Animals , Humans , Lipid Metabolism/physiology , Liver/metabolism , Phospholipids/metabolism , Triglycerides/metabolism
11.
Int J Mol Sci ; 19(3)2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29495336

ABSTRACT

The human plasma membrane transporter ASCT2 is responsible for mediating Na- dependent antiport of neutral amino acids. New insights into structure/function relationships were unveiled by a combined approach of recombinant over-expression, site-directed mutagenesis, transport assays in proteoliposomes and bioinformatics. WT and Cys mutants of hASCT2 were produced in P. pastoris and purified for functional assay. The reactivity towards SH reducing and oxidizing agents of WT protein was investigated and opposite effects were revealed; transport activity increased upon treatment with the Cys reducing agent DTE, i.e., when Cys residues were in thiol (reduced) state. Methyl-Hg, which binds to SH groups, was able to inhibit WT and seven out of eight Cys to Ala mutants. On the contrary, C467A loses the sensitivity to both DTE activation and Methyl-Hg inhibition. The C467A mutant showed a Km for Gln one order of magnitude higher than that of WT. Moreover, the C467 residue is localized in the substrate binding region of the protein, as suggested by bioinformatics on the basis of the EAAT1 structure comparison. Taken together, the experimental data allowed identifying C467 residue as crucial for substrate binding and for transport activity modulation of hASCT2.


Subject(s)
Amino Acid Transport System ASC/chemistry , Amino Acid Transport System ASC/genetics , Cysteine/genetics , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/genetics , Mutagenesis, Site-Directed , Amino Acid Transport System ASC/metabolism , Biological Transport/drug effects , Disulfides/chemistry , Energy Metabolism , Glutamine/metabolism , Glutamine/pharmacology , Humans , Kinetics , Minor Histocompatibility Antigens/metabolism , Models, Molecular , Oxidation-Reduction , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
12.
13.
PLoS One ; 12(7): e0181192, 2017.
Article in English | MEDLINE | ID: mdl-28715506

ABSTRACT

Barnacles are sessile macro-invertebrates, found along rocky shores in coastal areas worldwide. The euryhaline bay barnacle Balanus improvisus (Darwin, 1854) (= Amphibalanus improvisus) can tolerate a wide range of salinities, but the molecular mechanisms underlying the osmoregulatory capacity of this truly brackish species are not well understood. Aquaporins are pore-forming integral membrane proteins that facilitate transport of water, small solutes and ions through cellular membranes, and that have been shown to be important for osmoregulation in many organisms. The knowledge of the function of aquaporins in crustaceans is, however, limited and nothing is known about them in barnacles. We here present the repertoire of aquaporins from a thecostracan crustacean, the barnacle B. improvisus, based on genome and transcriptome sequencing. Our analyses reveal that B. improvisus contains eight genes for aquaporins. Phylogenetic analysis showed that they represented members of the classical water aquaporins (Aqp1, Aqp2), the aquaglyceroporins (Glp1, Glp2), the unorthodox aquaporin (Aqp12) and the arthropod-specific big brain aquaporin (Bib). Interestingly, we also found two big brain-like proteins (BibL1 and BibL2) constituting a new group of aquaporins not yet described in arthropods. In addition, we found that the two water-specific aquaporins were expressed as C-terminal splice variants. Heterologous expression of some of the aquaporins followed by functional characterization showed that Aqp1 transported water and Glp2 water and glycerol, agreeing with the predictions of substrate specificity based on 3D modeling and phylogeny. To investigate a possible role for the B. improvisus aquaporins in osmoregulation, mRNA expression changes in adult barnacles were analysed after long-term acclimation to different salinities. The most pronounced expression difference was seen for AQP1 with a substantial (>100-fold) decrease in the mantle tissue in low salinity (3 PSU) compared to high salinity (33 PSU). Our study provides a base for future mechanistic studies on the role of aquaporins in osmoregulation.


Subject(s)
Aquaporins/metabolism , Osmoregulation/physiology , Salinity , Thoracica/metabolism , Alternative Splicing , Animals , Aquaporins/genetics , Exons , Gene Expression Regulation , Genome , Glycerol/metabolism , Introns , Models, Molecular , Osmoregulation/genetics , Phylogeny , RNA, Messenger/metabolism , Sequence Analysis, DNA , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Thoracica/genetics , Thoracica/growth & development , Transcriptome , Water/metabolism
14.
Cancer Med ; 6(8): 1930-1940, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28677271

ABSTRACT

In an increasing proportion of cases, hepatocellular carcinoma (HCC) develops in patients with nonalcoholic fatty liver disease (NAFLD). Mutations in telomerase reverse transcriptase (hTERT) are associated with familial liver diseases. The aim of this study was to examine telomere length and germline hTERT mutations as associated with NAFLD-HCC. In 40 patients with NAFLD-HCC, 45 with NAFLD-cirrhosis and 64 healthy controls, peripheral blood telomere length was evaluated by qRT-PCR and hTERT coding regions and intron-exon boundaries sequenced. We further analyzed 78 patients affected by primary liver cancer (NAFLD-PLC, 76 with HCC). Enrichment of rare coding mutations (allelic frequency <0.001) was evaluated by Burden test. Functional consequences were estimated in silico and by over-expressing protein variants in HEK-293 cells. We found that telomere length was reduced in individuals with NAFLD-HCC versus those with cirrhosis (P = 0.048) and healthy controls (P = 0.0006), independently of age and sex. We detected an enrichment of hTERT mutations in NAFLD-HCC, that was confirmed when we further considered a larger cohort of NAFLD-PLC, and was more marked in female patients (P = 0.03). No mutations were found in cirrhosis and local controls, and only one in 503 healthy Europeans from the 1000 Genomes Project (allelic frequency = 0.025 vs. <0.001; P = 0.0005). Mutations with predicted functional impact, including the frameshift Glu113Argfs*79 and missense Glu668Asp, cosegregated with liver disease in two families. Three patients carried missense mutations (Ala67Val in homozygosity, Pro193Leu and His296Pro in heterozygosity) in the N-terminal template-binding domain (P = 0.037 for specific enrichment). Besides Glu668Asp, the Ala67Val variant resulted in reduced intracellular protein levels. In conclusion, we detected an association between shorter telomeres in peripheral blood and rare germline hTERT mutations and NAFLD-HCC.


Subject(s)
Carcinoma, Hepatocellular/etiology , Germ-Line Mutation , Liver Neoplasms/etiology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Telomerase/genetics , Aged , Aged, 80 and over , Alleles , Amino Acid Substitution , Carcinoma, Hepatocellular/diagnosis , Cohort Studies , Computational Biology/methods , Disease Susceptibility , Female , Genetic Association Studies , Humans , Leukocytes, Mononuclear/metabolism , Liver Neoplasms/diagnosis , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/diagnosis , Phenotype , Sequence Analysis, DNA , Severity of Illness Index , Telomere , Telomere Shortening
15.
Mol Cell Endocrinol ; 442: 134-141, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28007656

ABSTRACT

A lower bone mass accompanied by a higher bone fragility with increased risk of fracture are observed in individuals with type 1 diabetes mellitus. Low C-peptide levels are associated with low lumbar mineral density in postmenopausal woman. In this work, we investigated the role of C-peptide on the osteoblast cell biology in vitro. We examined intracellular pathways and we found that C peptide activates ERK1/2 in human osteoblast-like cells (Saos-2). We also observed that proinsulin C-peptide prevents a reduction of type I collagen expression and decreases, in combination with insulin, receptor activator of nuclear factor-κB (RANKL) levels. In this work we show for the first time that Cpeptide activates a specific intracellular pathway in osteoblasts and it modulates the expression of protein involved in bone remodeling. Our results suggest that both C-peptide may have a role in bone metabolism. Further studies are needing to fully clarify its role.


Subject(s)
C-Peptide/metabolism , Collagen Type I/metabolism , MAP Kinase Signaling System/physiology , Osteoblasts/metabolism , RANK Ligand/metabolism , Bone Remodeling/physiology , Cell Line , Humans , Insulin/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology
16.
Hum Mol Genet ; 25(23): 5212-5222, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27742777

ABSTRACT

Liver fibrosis is a pathological scarring response to chronic hepatocellular injury and hepatic stellate cells (HSCs) are key players in this process. PNPLA3 I148M is a common variant robustly associated with liver fibrosis but the mechanisms underlying this association are unknown. We aimed to examine a) the effect of fibrogenic and proliferative stimuli on PNPLA3 levels in HSCs and b) the role of wild type and mutant PNPLA3 overexpression on markers of HSC activation and fibrosis.Here, we show that PNPLA3 is upregulated by the fibrogenic cytokine transforming growth factor-beta (TGF-ß), but not by platelet-derived growth factor (PDGF), and is involved in the TGF-ß-induced reduction in lipid droplets in primary human HSCs. Furthermore, we show that retinol release from human HSCs ex vivo is lower in cells with the loss-of-function PNPLA3 148M compared with 148I wild type protein. Stable overexpression of PNPLA3 148I wild type, but not 148M mutant, in human HSCs (LX-2 cells) induces a reduction in the secretion of matrix metallopeptidase 2 (MMP2), tissue inhibitor of metalloproteinase 1 and 2 (TIMP1 and TIMP2), which is mediated by retinoid metabolism. In conclusion, we show a role for PNPLA3 in HSC activation in response to fibrogenic stimuli. Moreover, we provide evidence to indicate that PNPLA3-mediated retinol release may protect against liver fibrosis by inducing a specific signature of proteins involved in extracellular matrix remodelling.


Subject(s)
Hepatic Stellate Cells/metabolism , Lipase/genetics , Lipid Metabolism/genetics , Liver Cirrhosis/genetics , Membrane Proteins/genetics , Vitamin A/administration & dosage , Gene Expression Regulation/genetics , Genotype , Hepatic Stellate Cells/pathology , Humans , Lipase/biosynthesis , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Matrix Metalloproteinase 2/biosynthesis , Membrane Proteins/biosynthesis , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Primary Cell Culture , Tissue Inhibitor of Metalloproteinase-1/biosynthesis , Tissue Inhibitor of Metalloproteinase-2/biosynthesis , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Vitamin A/metabolism
17.
J Clin Lipidol ; 10(4): 816-823, 2016.
Article in English | MEDLINE | ID: mdl-27578112

ABSTRACT

BACKGROUND: Type 1 hyperlipoproteinemia is a rare autosomal recessive disorder most often caused by mutations in the lipoprotein lipase (LPL) gene resulting in severe hypertriglyceridemia and pancreatitis. OBJECTIVES: The aim of this study was to identify novel mutations in the LPL gene causing type 1 hyperlipoproteinemia and to understand the molecular mechanisms underlying the severe hypertriglyceridemia. METHODS: Three patients presenting classical features of type 1 hyperlipoproteinemia were recruited for DNA sequencing of the LPL gene. Pre-heparin and post-heparin plasma of patients were used for protein detection analysis and functional test. Furthermore, in vitro experiments were performed in HEK293 cells. Protein synthesis and secretion were analyzed in lysate and medium fraction, respectively, whereas medium fraction was used for functional assay. RESULTS: We identified two novel mutations in the LPL gene causing type 1 hyperlipoproteinemia: a two base pair deletion (c.765_766delAG) resulting in a frameshift at position 256 of the protein (p.G256TfsX26) and a nucleotide substitution (c.1211 T > G) resulting in a methionine to arginine substitution (p.M404 R). LPL protein and activity were not detected in pre-heparin or post-heparin plasma of the patient with p.G256TfsX26 mutation or in the medium of HEK293 cells over-expressing recombinant p.G256TfsX26 LPL. A relatively small amount of LPL p.M404 R was detected in both pre-heparin and post-heparin plasma and in the medium of the cells, whereas no LPL activity was detected. CONCLUSIONS: We conclude that these two novel mutations cause type 1 hyperlipoproteinemia by inducing a loss or reduction in LPL secretion accompanied by a loss of LPL enzymatic activity.


Subject(s)
Hyperlipoproteinemia Type I/enzymology , Hyperlipoproteinemia Type I/genetics , Lipoprotein Lipase/genetics , Adult , DNA Mutational Analysis , Female , HEK293 Cells , Humans , Hyperlipoproteinemia Type I/blood , Hyperlipoproteinemia Type I/metabolism , Lipoprotein Lipase/biosynthesis , Lipoprotein Lipase/blood , Lipoprotein Lipase/metabolism , Male , Mutation , Young Adult
18.
Gastroenterology ; 150(5): 1219-1230.e6, 2016 05.
Article in English | MEDLINE | ID: mdl-26850495

ABSTRACT

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a leading cause of liver damage and is characterized by steatosis. Genetic factors increase risk for progressive NAFLD. A genome-wide association study showed that the rs641738 C>T variant in the locus that contains the membrane bound O-acyltransferase domain-containing 7 gene (MBOAT7, also called LPIAT1) and transmembrane channel-like 4 gene (TMC4) increased the risk for cirrhosis in alcohol abusers. We investigated whether the MBOAT7-TMC4 is a susceptibility locus for the development and progression of NAFLD. METHODS: We genotyped rs641738 in DNA collected from 3854 participants from the Dallas Heart Study (a multi-ethnic population-based probability sample of Dallas County residents) and 1149 European individuals from the Liver Biopsy Cross-Sectional Cohort. Clinical and anthropometric data were collected, and biochemical and lipidomics were measured in plasma samples from participants. A total of 2736 participants from the Dallas Heart Study also underwent proton magnetic resonance spectroscopy to measure hepatic triglyceride content. In the Liver Biopsy Cross-Sectional Cohort, a total of 1149 individuals underwent liver biopsy to diagnose liver disease and disease severity. RESULTS: The genotype rs641738 at the MBOAT7-TMC4 locus associated with increased hepatic fat content in the 2 cohorts, and with more severe liver damage and increased risk of fibrosis compared with subjects without the variant. MBOAT7, but not TMC4, was found to be highly expressed in the liver. The MBOAT7 rs641738 T allele was associated with lower protein expression in the liver and changes in plasma phosphatidylinositol species consistent with decreased MBOAT7 function. CONCLUSIONS: We provide evidence for an association between the MBOAT7 rs641738 variant and the development and severity of NAFLD in individuals of European descent. This association seems to be mediated by changes in the hepatic phosphatidylinositol acyl-chain remodeling.


Subject(s)
Acetyltransferases/genetics , Acyltransferases/genetics , Liver Cirrhosis/genetics , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Polymorphism, Genetic , White People/genetics , Acetyltransferases/metabolism , Acyltransferases/metabolism , Biopsy , Case-Control Studies , Cross-Sectional Studies , Europe/epidemiology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Liver/metabolism , Liver/pathology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/ethnology , Liver Cirrhosis/metabolism , Male , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/ethnology , Non-alcoholic Fatty Liver Disease/metabolism , Phenotype , Phosphatidylinositols/metabolism , Proton Magnetic Resonance Spectroscopy , Risk Factors , Severity of Illness Index , Texas/epidemiology , Triglycerides/metabolism
19.
Inflamm Bowel Dis ; 22(1): 134-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26355465

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBD) are characterized by chronic relapsing inflammation of the gastrointestinal tract and encompass Crohn's disease and ulcerative colitis. IBD are often associated with extraintestinal manifestations affecting multiple organs including the liver. Increased levels of serum aminotransferases, possibly related to nonalcoholic fatty liver disease, constitute one of the most frequently described IBD-related liver diseases. The PNPLA3 I148M substitution is a major common genetic determinant of hepatic fat content and progression to chronic liver disease. The aim of this study was to investigate whether carriers of PNPLA3 148M allele with IBD have higher risk of liver steatosis and increase in transaminases levels. METHODS: The PNPLA3 I148M (rs738409) genotype was performed by Taqman assays in 158 individuals from Southern Italy (namely, Catanzaro cohort) and in 207 individuals from Northern Italy (namely, Milan cohort) with a definite diagnosis of IBD. Demographic and clinical data and also alanine transaminase levels were collected for both cohorts. The Catanzaro cohort underwent liver evaluation by sonography and liver stiffness and controlled attenuation parameter measurements by transient elastography. RESULTS: Here, we show for the first time that carriers of the PNPLA3 148M allele with IBD have a greater risk of hepatic steatosis (odds ratio, 2.9, and confidence interval, 1.1-7.8), higher controlled attenuation parameter values (P = 0.029), and increased circulating alanine transaminase (P = 0.035) in the Catanzaro cohort. We further confirm the higher alanine transaminase levels in the Milan cohort (P < 0.001). CONCLUSIONS: Our results show that PNPLA3 148M carriers with IBD have higher susceptibility to hepatic steatosis and liver damage.


Subject(s)
Alanine Transaminase/blood , Genetic Predisposition to Disease , Inflammatory Bowel Diseases/complications , Lipase/genetics , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/etiology , Alleles , Aspartate Aminotransferases/blood , Biomarkers/analysis , Cohort Studies , Disease Progression , Female , Follow-Up Studies , Genotype , Heterozygote , Humans , Inflammatory Bowel Diseases/genetics , Italy , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/pathology , Polymerase Chain Reaction , Prognosis , Risk Factors
20.
Hepatology ; 63(2): 418-27, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26517016

ABSTRACT

UNLABELLED: Chronic hepatitis C virus (HCV) infection may progress to cirrhosis and hepatocellular carcinoma (HCC). Recently, two genetic variants, DEPDC5 rs1012068 and MICA rs2596542, were associated with the onset of HCC in Asian subjects with chronic HCV infection. The aim of the present study was to analyze whether DEPDC5 and MICA genetic variants were associated with liver disease progression in European subjects with chronic HCV infection. In a Northern Italian discovery cohort (n = 477), neither DEPDC5 rs1012068 nor MICA rs2596542 were associated with HCC (n = 150). However, DEPDC5 rs1012068 was independently associated with cirrhosis (n = 300; P = 0.049). The association of rs1012068 with moderate to severe fibrosis was confirmed in an independent cross-sectional German cohort (n = 415; P = 0.006). Furthermore, DEPDC5 rs1012068 predicted faster fibrosis progression in a prospective cohort (n = 247; P = 0.027). Next, we examined the distribution of nonsynonymous DEPDC5 variants in the overall cross-sectional cohort (n = 912). The presence of at least one variant increased the risk of moderate/severe fibrosis by 54% (P = 0.040). To understand the molecular mechanism underlying the genetic association of DEPDC5 variants with fibrosis progression, we performed in vitro studies on immortalized hepatic stellate cells (LX-2). In these cells, down-regulation of DEPDC5 resulted in increased expression of ß-catenin and production of its target matrix metallopeptidase 2 (MMP2), a secreted enzyme involved in fibrosis progression. CONCLUSION: DEPDC5 variants increase fibrosis progression in European subjects with chronic HCV infection. Our findings suggest that DEPDC5 down-regulation may contribute to HCV-related fibrosis by increasing MMP2 synthesis through the ß-catenin pathway.


Subject(s)
Carcinoma, Hepatocellular/etiology , Disease Progression , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/genetics , Liver Cirrhosis/etiology , Liver Neoplasms/etiology , Repressor Proteins/genetics , Cross-Sectional Studies , Female , GTPase-Activating Proteins , Genetic Variation , Germany , Histocompatibility Antigens Class I/genetics , Humans , Italy , Male , Middle Aged , Prospective Studies , Switzerland , White People
SELECTION OF CITATIONS
SEARCH DETAIL