Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Comp Immunol ; 114: 103840, 2021 01.
Article in English | MEDLINE | ID: mdl-32858087

ABSTRACT

In the present work we have focused on the Histone Deacetylase (HDAC) control of myeloid cells behavior during Xenopus tail regeneration. Here we show that myeloid differentiation is crucial to modulate the regenerative ability of Xenopus tadpoles in a HDAC activity-dependent fashion. HDAC activity inhibition during the first wave of myeloid differentiation disrupted myeloid cells dynamics in the regenerative bud as well the mRNA expression pattern of myeloid markers, such as LURP, MPOX, Spib and mmp7. We also functionally bridge the spatial and temporal dynamics of lipid droplets, the main platform of lipid mediators synthesis in myeloid cells during the inflammatory response, and the regenerative ability of Xenopus tadpoles. In addition, we showed that 15-LOX activity is necessary during tail regeneration. Taken together our results support a role for the epigenetic control of myeloid behavior during tissue and organ regeneration, which may positively impact translational approaches for regenerative medicine.


Subject(s)
Histone Deacetylases/metabolism , Myeloid Cells/metabolism , Xenopus laevis/physiology , Animals , Biomarkers/metabolism , Cell Differentiation , Cells, Cultured , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Humans , Organogenesis , Regeneration , Regenerative Medicine
SELECTION OF CITATIONS
SEARCH DETAIL