Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Stem Cells ; 16(4): 425-437, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37643763

ABSTRACT

Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68+/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α+ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.

2.
Biomolecules ; 10(11)2020 11 17.
Article in English | MEDLINE | ID: mdl-33212923

ABSTRACT

The increasing detection of infections of Trypanosoma cruzi, the etiological agent of Chagas disease, in non-endemic regions beyond Latin America has risen to be a major public health issue. With an impact in the millions of people, current treatments rely on antiquated drugs that produce severe side effects and are considered nearly ineffective for the chronic phase. The minimal progress in the development of new drugs highlights the need for advances in basic research on crucial biochemical pathways in T. cruzi to identify new targets. Here, we report on the T. cruzi presenilin-like transmembrane aspartyl enzyme, a protease of the aspartic class in a unique phylogenetic subgroup with T. vivax separate from protozoans. Computational analyses suggest it contains nine transmembrane domains and an active site with the characteristic PALP motif of the A22 family. Multiple linear B-cell epitopes were identified by SPOT-synthesis analysis with Chagasic patient sera. Two were chosen to generate rabbit antisera, whose signal was primarily localized to the flagellar pocket, intracellular vesicles, and endoplasmic reticulum in parasites by whole-cell immunofluorescence. The results suggest that the parasitic presenilin-like enzyme could have a role in the secretory pathway and serve as a target for the generation of new therapeutics specific to the T. cruzi.


Subject(s)
Aspartic Acid Proteases/metabolism , Cell Membrane/metabolism , Pregnancy Proteins/metabolism , Presenilins/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , Aspartic Acid Proteases/analysis , Aspartic Acid Proteases/genetics , Cell Membrane/chemistry , Cell Membrane/genetics , Humans , Phylogeny , Pregnancy Proteins/analysis , Pregnancy Proteins/genetics , Presenilins/analysis , Presenilins/genetics , Protozoan Proteins/analysis , Protozoan Proteins/genetics , Rabbits , Sequence Analysis, Protein , Trypanosoma cruzi/chemistry , Trypanosoma cruzi/genetics
3.
J Inflamm (Lond) ; 16: 18, 2019.
Article in English | MEDLINE | ID: mdl-31346322

ABSTRACT

BACKGROUND: Caused by Mycobacterium tuberculosis, tuberculosis (TB) is an extremely contagious disease predominantly affecting the lungs. TB is found worldwide and has a major impact on public health safety primarily due to its high mortality rate. Applied for over a hundred years as a preventive measure, Mycobacterium bovis BCG remains the only available TB vaccine. Only one seminal study about the apoptotic pathways induced by this vaccine in the monocytic lineage of the host cell has found the effects of BCG on regulation of apoptosis. The aim of this study was to explore beyond that pioneer study the pathway related to the in vitro cell-death pattern and the inflammatory response to the BCG vaccine in human monocytes. METHODS: Cohorts of HIV-negative volunteers were enrolled: adult Healthy Donors (HD) and neonates' Umbilical Cord Blood (UCB) individuals. Host mononuclear cells were infected with the M. bovis Moreau strain of BCG vaccine at 16, 24, 48, and 72 h. The Real-Time RT-PCR for TRADD, Bcl-2, and Caspases-1 and -3 were performed, and supernatants were assayed in parallel for Caspase-1, NLRP3, HO-1, and IL-1ß levels whereas caspases were assessed intracellularly. The effect of a BCG infection in monocytes was characterized via a metabolic activity assay by LDH release profiles. RESULTS: Overall, the BCG vaccine induced significantly higher Caspase-1 and Bcl-2 mRNA levels in both the HD and UCB groups (p-value ≤0.05). In addition, a significant increase solely in Caspase-1 protein levels was also noted in both HD and UCB (p-value ≤0.05) notwithstanding the absence of any damaged cell membranes. CONCLUSIONS: Our data directly corroborate other findings showing that BCG Moreau led to an increased secretion of IL-1ß but not IL-18, two Caspase-1-activated cytokines, and are also in support of the model that the BCG Moreau infection of human mononuclear cells may induce a cell-death pattern involving Caspase-1 activation.

4.
Front Immunol ; 7: 306, 2016.
Article in English | MEDLINE | ID: mdl-27563302

ABSTRACT

Biomarkers or biosignature profiles have become accessible over time in population-based studies for Chagas disease. Thus, the identification of consistent and reliable indicators of the diagnosis and prognosis of patients with heart failure might facilitate the prioritization of therapeutic management to those with the highest chance of contracting this disease. The purpose of this paper is to review the recent state and the upcoming trends in biomarkers for human Chagas disease. As an emerging concept, we propose a classification of biomarkers based on plasmatic-, phenotype-, antigenic-, genetic-, and management-related candidates. The available data revisited here reveal the lessons learned thus far and the existing challenges that still lie ahead to enable biomarkers to be employed consistently in risk evaluation for this disease. There is a strong need for biomarker validation, particularly for biomarkers that are specific to the clinical forms of Chagas disease. The current failure to achieve the eradication of the transmission of this disease has produced determination to solve this validation issue. Finally, it would be strategic to develop a wide variety of biomarkers and to test them in both preclinical and clinical trials.

5.
Cell Physiol Biochem ; 37(2): 409-18, 2015.
Article in English | MEDLINE | ID: mdl-26314826

ABSTRACT

Treatment for tuberculosis is effective with the use of proper antibiotics, but the number of drug-resistant cases is increasing. Drug resistance occurred in 650,000 cases of the 20 million patients in treatment worldwide in 2011, which demonstrates the necessity of finding new therapeutic approaches. In this context, the search for new medicines and immunomodulators could help reduce the prevalence and incidence of multi-drug-resistant tuberculosis cases. Thus several preclinical studies demonstrate the involvement of the P2X7 receptor (P2X7R) in the control of Mycobacterium tuberculosis (MTB) infection. Adenosine triphosphate (ATP), a natural agonist for P2X7R, promotes MTB death and the induction of apoptosis in monocytes and macrophages infected with MTB via activation of P2X7R by extracellular ATP. In addition, P2X7R activation in the presence of ATP increases the expression of major histocompatibility complex (MHC) class II by macrophages infected with Mycobacterium bovis (BCG) or MTB, which contributes to the generation of the antimicrobial immune response via T cells. Nevertheless, one idea that seems overlooked by the "purinergic community" is the use of the high-conductance channel associated with P2X7R to increase the passage of hydrophilic drugs to the cytoplasm of cells that express the P2X7 pore, a potential method for a drug delivery system. In this work, we propose the use of P2X7 agonists in conjunction with low molecular weight anti-tuberculosis medicines for the treatment of multi-drug-resistant tuberculosis.


Subject(s)
Adenosine Triphosphate/pharmacology , Receptors, Purinergic P2X7/metabolism , Tuberculosis/drug therapy , Adenosine Triphosphate/therapeutic use , Animals , Antitubercular Agents/therapeutic use , Drug Resistance, Bacterial , Drug Therapy, Combination , Gene Expression Regulation/drug effects , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/immunology , Receptors, Purinergic P2X7/genetics , Tuberculosis/genetics , Tuberculosis/metabolism
6.
Eur J Med Chem ; 84: 708-17, 2014 09 12.
Article in English | MEDLINE | ID: mdl-25064348

ABSTRACT

Leukemia is the most common blood cancer, and its development starts at diverse points, leading to distinct subtypes that respond differently to therapy. This heterogeneity is rarely taken into account in therapies, so it is still essential to look for new specific drugs for leukemia subtypes or even for therapy-resistant cases. Naphthoquinones (NQ) are considered privileged structures in medicinal chemistry due to their plethora of biological activities, including antimicrobial and anticancer effects. Nitrogen-containing heterocycles such as 1,2,3-1H-triazoles have been identified as general scaffolds for generating glycosidase inhibitors. In the present study, the NQ and 1,2,3-1H-triazole cores have been combined to chemically synthesize 18 new 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles (1,2-FNQT). Their cytotoxicities were evaluated against four different leukemia cell lines, including MOLT-4 and CEM (lymphoid cell lines) and K562 and KG1 (myeloid cell lines), as well as normal human peripheral blood mononucleated cells (PBMCs). The new 1,2-FNQT series showed high cytotoxic potential against all leukemia cell lines tested, and some compounds (12o and 12p) showed even better results than the classical therapeutic compounds such as doxorubicin or cisplatin. Others compounds, such as 12b, are promising because of their high selectivity against lymphoblastic leukemia and their low activity against normal hematopoietic cells. The cells of lymphoid origin (MOLT and CEM) were generally more sensitive than the myeloid cell lines to this series of compounds, and most of the compounds that showed the highest cytotoxicity were similarly active against both cell lines.


Subject(s)
Furans/chemical synthesis , Furans/pharmacology , Leukemia, Lymphoid/pathology , Leukemia, Myeloid/pathology , Naphthoquinones/chemical synthesis , Naphthoquinones/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Furans/chemistry , Humans , K562 Cells , Leukemia, Lymphoid/drug therapy , Leukemia, Myeloid/drug therapy , Molecular Structure , Naphthoquinones/chemistry , Structure-Activity Relationship
7.
Exp Parasitol ; 129(4): 381-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21939658

ABSTRACT

Synthetic thiosemicarbazones and semicarbazones were evaluated for their Trypanosoma cruzi trypomastigotes obtained from LLC-MK2 cell cultures. In general, thiosemicarbazone derivatives were most effective and among them the 4-N-(2'-methoxy styryl)-thiosemicarbazone was chosen, to compare the in vitro effect against amastigotes of T. cruzi lodged in mouse peritoneal and human macrophages. A potent trypanocidal effect was observed that was more pronounced against parasites internalized in human macrophages. A potential target for this compound was also evaluated by measuring the nitric oxide synthase activity through NADPH consumption. A significant decrease in enzyme activity was observed. In contrast to the cytotoxic effect observed with benznidazole, no macrophage toxicity was observed for any of the compounds, indicating that their activity was specific for the parasite forms investigated.


Subject(s)
Semicarbazones/pharmacology , Thiosemicarbazones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cells, Cultured , Chagas Disease/drug therapy , Humans , Macrophages/parasitology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Male , Mice , Nitric Oxide Synthase/metabolism , Trypanosoma cruzi/enzymology
8.
Exp Parasitol ; 127(1): 160-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20647011

ABSTRACT

In this study we compared the effects of naphthoquinones (α-lapachone, ß-lapachone, nor-ß-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed ß-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-ß-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. ß-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and ß-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that ß-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.


Subject(s)
Anti-Infective Agents/pharmacology , Naphthoquinones/pharmacology , Peptide Hydrolases/drug effects , Protease Inhibitors/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chlorocebus aethiops , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/pharmacology , Leucine/analogs & derivatives , Leucine/pharmacology , Peptide Hydrolases/metabolism , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Vero Cells
9.
Parasitol Res ; 106(1): 95-104, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19777260

ABSTRACT

Leishmania (Viannia) braziliensis is the major causative agent of American tegumentary leishmaniasis, a disease that has a wide geographical distribution and is a severe public health problem. The cysteine proteinase B (CPB) from Leishmania spp. represents an important virulence factor. In this study, we characterized and localized cysteine proteinases in L. (V.) braziliensis promastigotes. By a combination of triton X-114 extraction, concanavalin A-affinity, and ion exchange chromatographies, we obtained an enriched fraction of hydrophobic proteins rich in mannose residues. This fraction contained two proteinases of 63 and 43 kDa, which were recognized by a CPB antiserum, and were partially sensitive to E-64 in enzymatic assays with the peptide Glu-Phe-Leu. In confocal microscopy, the CPB homologues localized in the peripheral region of the parasite. This data together with direct agglutination and flow cytometry assays suggest a surface localization of the CPB homologues. The incubation of intact promastigotes with phospholipase C reduced the number of CPB-positive cells, while anti-cross-reacting determinant and anti-CPB antisera recognized two polypeptides (63 and 43 kDa) derived from phospholipase C treatment, suggesting that some CPB isoforms may be glycosylphosphatidylinositol-anchored. Collectively, our results suggest the presence of CPB homologues in L. braziliensis surface and highlight the need for further studies on L. braziliensis cysteine proteinases, which require enrichment methods for enzymatic detection.


Subject(s)
Cysteine Proteases/isolation & purification , Cysteine Proteases/metabolism , Leishmania braziliensis/enzymology , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Animals , Cell Membrane/chemistry , Cysteine Proteases/chemistry , Cysteine Proteases/immunology , Cysteine Proteinase Inhibitors/pharmacology , Leucine/analogs & derivatives , Leucine/pharmacology , Membrane Proteins/chemistry , Membrane Proteins/immunology , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Molecular Weight , Protozoan Proteins/chemistry , Protozoan Proteins/immunology
10.
Exp Parasitol ; 122(2): 128-33, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19217906

ABSTRACT

Two aspartyl proteases activities were identified and isolated from Trypanosoma cruzi epimastigotes: cruzipsin-I (CZP-I) and cruzipsin-II (CZP-II). One was isolated from a soluble fraction (CZP-II) and the other was solubilized with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CZP-I). The molecular mass of both proteases was estimated to be 120 kDa by HPLC gel filtration and the activity of the enzymes was detected in a doublet of bands (56 and 48 kDa) by substrate-sodium dodecyl sulphate-polyacrylamide-gelatin gel electrophoresis. Substrate specificity studies indicated that the enzymes consistently hydrolyze the cathepsin D substrate Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu-O4MP but failed to hydrolyze serine and other protease substrates. Both proteases activities were strongly inhibited by the classic inhibitor pepstatin-A (> or =68%) and the aspartic active site labeling agent, 1,2-epoxy-3-(phenyl-nitrophenoxy) propane (> or =80%). These findings show that both proteases are novel T. cruzi acidic proteases. The physiological function of these enzymes in T. cruzi has under investigation.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/isolation & purification , Trypanosoma cruzi/enzymology , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Chromatography, High Pressure Liquid , Chromogenic Compounds/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Molecular Weight , Substrate Specificity
11.
Parasitol Res ; 103(1): 1-10, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18389282

ABSTRACT

Leishmaniasis is a disease caused by flagellate protozoan Leishmania spp. and represents an emergent illness with high morbidity and mortality in the tropics and subtropics. Since the discovery of the first drugs for Leishmaniasis treatment (i.e., pentavalent antimonials), until the current days, the search for substances with antileishmanial activity, without toxic effects, and able to overcome the emergence of drug resistant strains still remains as the current goal. This article reports the development of new chemotherapies through the rational design of new drugs, the use of products derived from microorganisms and plants, and treatments related to immunity as new alternatives for the chemotherapy of leishmaniasis.


Subject(s)
Antiprotozoal Agents/therapeutic use , Leishmaniasis/drug therapy , Biological Products/therapeutic use , Drug Design , Humans
12.
J Immune Based Ther Vaccines ; 4: 4, 2006 Sep 06.
Article in English | MEDLINE | ID: mdl-16956404

ABSTRACT

BACKGROUND: Oral administration of BCG was the route initially used by Calmette and Guérin, but was replaced by intradermal administration in virtually all countries after the Lubeck accident. However, Brazil continued to administer oral BCG Moreau RDJ, which was maintained until the mid-1970s when it was substituted by the intradermal route. Although BCG vaccination has been used in humans since 1921, little is known of the induced immune response. The aim of this study was to analyse immunological responses after oral vaccination with M. bovis BCG Moreau RDJ. METHODS: This study in healthy volunteers has measured cellular and humoral aspects of the immunological response to oral M. bovis BCG Moreau RDJ in Rio de Janeiro, Brazil. T-cell trafficking and Th1 and Th2 cytokine responses are described, as well as isotype-specific antibody production using novel techniques. RESULTS: Oral immunisation has no adverse effects. We have shown that there are cellular and humoral immunological responses after oral immunisation. Oral revaccination does not induce a positive skin test in responsive individuals and multiple booster orally was able to induce modulation in humoral immunological responses (switch from IgG to IgA) in previously immunised subjects and incapable of inducing tolerance. In contrast, the cellular immune response does not differ between vaccinated individuals with positive and negative skin test reactions. CONCLUSION: All subjects, including those who did not respond to the skin test at study commencement, were capable of mounting humoral and cellular immune response to the antigens tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...