Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 7(9): 862-7, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27660692

ABSTRACT

Optimization of isoquinolinone PI3K inhibitors led to the discovery of a potent inhibitor of PI3K-γ (26 or IPI-549) with >100-fold selectivity over other lipid and protein kinases. IPI-549 demonstrates favorable pharmacokinetic properties and robust inhibition of PI3K-γ mediated neutrophil migration in vivo and is currently in Phase 1 clinical evaluation in subjects with advanced solid tumors.

2.
Chem Biol ; 20(11): 1364-74, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24211136

ABSTRACT

Phosphoinositide-3 kinase (PI3K)-δ and PI3K-γ are preferentially expressed in immune cells, and inhibitors targeting these isoforms are hypothesized to have anti-inflammatory activity by affecting the adaptive and innate immune response. We report on a potent oral PI3K-δ and PI3K-γ inhibitor (IPI-145) and characterize this compound in biochemical, cellular, and in vivo assays. These studies demonstrate that IPI-145 exerts profound effects on adaptive and innate immunity by inhibiting B and T cell proliferation, blocking neutrophil migration, and inhibiting basophil activation. We explored the therapeutic value of combined PI3K-δ and PI3K-γ blockade, and IPI-145 showed potent activity in collagen-induced arthritis, ovalbumin-induced asthma, and systemic lupus erythematosus rodent models. These findings support the hypothesis that inhibition of immune function can be achieved through PI3K-δ and PI3K-γ blockade, potentially leading to significant therapeutic effects in multiple inflammatory, autoimmune, and hematologic diseases.


Subject(s)
Arthritis/drug therapy , Asthma/drug therapy , Disease Models, Animal , Isoquinolines/pharmacology , Lupus Erythematosus, Systemic/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Purines/pharmacology , Animals , Arthritis/chemically induced , Arthritis/immunology , Asthma/chemically induced , Asthma/immunology , Collagen Type II , Dose-Response Relationship, Drug , Female , Humans , Isoquinolines/chemistry , Lupus Erythematosus, Systemic/immunology , Molecular Structure , Ovalbumin , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Purines/chemistry , Rats , Rats, Inbred Lew , Rats, Wistar , Structure-Activity Relationship
3.
Mol Cancer Ther ; 8(12): 3369-78, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19952119

ABSTRACT

IPI-504, a water-soluble ansamycin analogue currently being investigated in clinical trials, is a potent inhibitor of the protein chaperone heat shock protein 90 (Hsp90). Inhibition of Hsp90 by IPI-504 triggers the degradation of important oncogenic client proteins. In cells, the free base of IPI-504 hydroquinone exists in a dynamic redox equilibrium with its corresponding quinone (17-AAG); the hydroquinone form binding 50 times more tightly to Hsp90. It has been proposed recently that the NAD(P)H:quinone oxidoreductase NQO1 can produce the active hydroquinone and could be essential for the activity of IPI-504. Here, we have devised a method to directly measure the intracellular ratio of hydroquinone to quinone (HQ/Q) and have applied this measurement to correlate NQO1 enzyme abundance with HQ/Q ratio and cellular activity of IPI-504 in 30 cancer cell lines. Interestingly, the intracellular HQ/Q ratio was correlated with NQO1 levels only in a subset of cell lines and overall was poorly correlated with the growth inhibitory activity of IPI-504. Although artificial overexpression of NQO1 is able to increase the level of hydroquinone and cell sensitivity to IPI-504, it has little effect on the activity of 17-amino-17-demethoxy-geldanamycin, the major active metabolite of IPI-504. This finding could provide an explanation for the biological activity of IPI-504 in xenograft models of cell lines that are not sensitive to IPI-504 in vitro. Our results suggest that NQO1 activity is not a determinant of IPI-504 activity in vivo and, therefore, unlikely to become an important resistance mechanism to IPI-504 in the clinic.


Subject(s)
Benzoquinones/pharmacology , Cell Proliferation/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , NAD(P)H Dehydrogenase (Quinone)/metabolism , Animals , Benzoquinones/metabolism , Cell Line, Tumor , HCT116 Cells , HSP90 Heat-Shock Proteins/metabolism , HT29 Cells , Humans , Hydroquinones/metabolism , Immunoblotting , K562 Cells , Lactams, Macrocyclic/metabolism , Male , Mice , Mice, Nude , Mutation , NAD(P)H Dehydrogenase (Quinone)/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...