Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202400382, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619863

ABSTRACT

Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation - an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in-situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.

2.
Chemistry ; 30(23): e202304256, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38300687

ABSTRACT

Metal Organic Frameworks (MOFs) are organic-inorganic hybrid materials with exceptionally customizable composition and properties. MOFs intrinsically possess open metal sites, tunable pore size/shape and an ultra-large specific surface area, and have obtained significant attention over the past 30 years. Furthermore, through the integration of functional moieties such as, molecules, functional groups, noble metal clusters and nanocrystals or nanoparticles into MOFs, the resulting composites have greatly enriched the physical and chemical properties of pure MOFs, enabling their application in a wider range of fields. Triethylamine (TEA) as an organic base has consistently played a fundamental role in the development of MOFs. In this Concept, the versatility of triethylamine when involved in the synthesis of MOFs is discussed. Four sections are used to elaborate on the role of TEA including: (1) Single crystal synthesis; (2) Size and morphology control; (3) Counterion of MOFs; (4) MOFs composites synthesis. In the last part, we highlight the potential of TEA for further developments.

3.
ChemSusChem ; 17(5): e202301614, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38297965

ABSTRACT

This study shows that the simple approach of keeping anodic TiO2 nanotubes at 70 °C in ethanol for 1 h results in improved photoelectrochemical water splitting activity due to initiation of crystallization in the material amplified by the light-induced formation of a Ti3+ -Vo states under UV 365 nm illumination. For the first time, the light-induced Ti3+ -Vo states are generated when oxygen is present in the reaction solution and are stable when in contact with air (oxygen) for a long time (two months). We confirmed here that the amorphous or nearly amorphous structure of titania supports the survival of Ti3+ species in contact with oxygen. It is also shown that the ethanol treatment substantially improves the morphology of the titania nanotube arrays, specifically, less surface cracking and surface purification from C- and F-based contamination from the electrolyte used for anodizing.

4.
Adv Sci (Weinh) ; 11(7): e2307061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072643

ABSTRACT

The realization of large-scale industrial application of alkaline water electrolysis for hydrogen generation is severely hampered by the cost of electricity. Therefore, it is currently necessary to synthesize highly efficient electrocatalysts with excellent stability and low overpotential under an industrial-level current density. Herein, Ir-incorporated in partially oxidized Ru aerogel has been designed and synthesized via a simple in situ reduction strategy and subsequent oxidation process. The electrochemical measurements demonstrate that the optimized Ru98 Ir2 -350 electrocatalyst exhibits outstanding hydrogen evolution reaction (HER) performance in an alkaline environment (1 M KOH). Especially, at the large current density of 1000 mA cm-2 , the overpotential is as low as 121 mV, far exceeding the benchmark Pt/C catalyst. Moreover, the Ru98 Ir2 -350 catalyst also displays excellent stability over 1500 h at 1000 mA cm-2 , denoting its industrial applicability. This work provides an efficient route for developing highly active and ultra-stable electrocatalysts for hydrogen generation under industrial-level current density.

5.
Nanomaterials (Basel) ; 13(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38063742

ABSTRACT

The integration of metal oxide nanomaterials with mesoporous silica is a promising approach to exploiting the advantages of both types of materials. Traditional synthesis methods typically require multiple steps. This work instead presents a fast, one-step, template-free method for the synthesis of metal oxides homogeneously dispersed within mesoporous silica, including oxides of W, Ti, Nb, Ta, Sn, and Mo. These composites have tunable metal oxide contents, large surface areas, and wide mesopores. The combination of Nb2O5 nanoparticles (NPs) with SiO2 results in an increased surface area and a larger number of acid sites compared to pure Nb2O5 NPs. The surface texture and acidity of the silica-niobia composites can be tuned by adjusting the Nb/Si molar ratio. Moreover, the silica provides protection to the niobia NPs, preventing sintering during thermal treatment at 400 °C. The silica-niobia materials exhibit superior performance as catalysts in the aldol condensation of furfural (Fur) with acetone compared to pure niobia, leading to an up to 62% in product yield. Additionally, these catalysts show remarkable stability, retaining their performance over multiple runs. This work demonstrates the potential of the proposed synthesis approach for preparing more sustainable, high-performance, durable, and stable nanoscale metal oxide-based catalysts with a tunable composition, surface area, and active site density.

6.
BMJ Case Rep ; 16(12)2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38160032

ABSTRACT

Dural arteriovenous fistulas (DAVFs) are intracranial vascular abnormalities in which one or more meningeal arteries shunt into a venous structure, either a cortical vein or a venous sinus, causing cerebral venous hypertension and risk of haemorrhage. Imaging diagnosis and characterisation are of paramount importance to grade the haemorrhagic risk and direct management. Non-invasive vascular neuroimaging might pose a diagnostic suspicion, but invasive catheter digital subtraction angiography (DSA) is usually required. We present the case of a patient with an atypical acute cerebral haemorrhage in which admission imaging with CT angiography (CTA) and MR angiography (MRA) was unremarkable, while advanced morphological MR with susceptibility-weighted imaging (SWI) revealed specific findings suggesting unilateral chronic venous hypertension. Successively, DSA detected a small DAVF that was treated with endovascular embolization. This case report raises awareness on subtle but important conventional imaging findings that suggest the presence of an AV shunt, to avoid misdiagnosis and delayed treatment.


Subject(s)
Central Nervous System Vascular Malformations , Embolization, Therapeutic , Hypertension , Intracranial Hypertension , Humans , Magnetic Resonance Imaging , Magnetic Resonance Angiography/methods , Central Nervous System Vascular Malformations/complications , Central Nervous System Vascular Malformations/diagnostic imaging , Central Nervous System Vascular Malformations/therapy , Neuroimaging , Intracranial Hypertension/therapy , Hypertension/therapy
7.
Foods ; 12(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37959154

ABSTRACT

Pumpkin (Cucurbita sp.) represents an unquestionable source of valuable nutrients and bioactive compounds having a broad spectrum of health-promoting effects. The goal of this work was to characterize the byproducts (peels and filaments) of different pumpkin varieties belonging to C. moschata (Butternut, Lunga di Napoli, Moscata di Provenza, and Violina rugosa) and C. maxima (Delica, Delica vanity, Hokkaido, and Mantovana) species in terms of total carotenoid content, antioxidant activity, and carotenoid profiling. The research revealed that peels and filaments were a good source of ß-carotene and other non-esterified carotenoids, as well as esterified carotenoids. Considering the growing market demand for safe and healthy food products, pumpkin byproducts, having also an interesting antioxidant bioactivity, could be useful in the development of novel functional products.

8.
Nanoscale Horiz ; 8(10): 1435-1439, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37615060

ABSTRACT

Herein, we report the study of atomically precise AuxAg25-x nanoclusters (NCs) toward photocatalytic hydrogen evolution. The incorporation of Au atoms into Ag25 NCs not only narrowed the HOMO-LUMO gaps but also created an interstitial Au-Ag microenvironment, which promoted the photogenerated charge carrier utilization and optimized the reaction dynamics.

9.
Langmuir ; 39(33): 11603-11609, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37550248

ABSTRACT

CuO-based nanostructures have been widely investigated in catalysis, sensing, and energy conversion and storage in recent years. The unique properties of these nanostructures are largely related to the morphology and crystallinity of CuO. The controlled deposition of conformal CuO thin films by atomic layer deposition (ALD) has remained challenging until now owing to the limited understanding of the nucleation behavior and growth process. Here, a novel ALD process for copper oxide was developed using copper(II) trifluoroacetylacetonate [Cu(tfacac)2] as the metal precursor. The nucleation and initial growth of a CuO film are strongly dependent on the surface OH concentration. A continuous particulate-like CuO film was grown on OH-abundant pristine SiO2 particles, whereas the surface of the annealed SiO2 particles (presenting mostly isolated OH groups) remained uncoated under the same growth conditions. Moreover, a uniform and conformal CuO film was grown on covalently functionalized CNTs under identical conditions as pristine SiO2 particles. This study provides a strategy for tailoring the structure and the properties of thin films via ALD, which is promising for designing well-tailored nanostructures for various applications.

10.
Small ; 19(46): e2304585, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37469201

ABSTRACT

High-entropy oxides (HEOs) have emerged as promising anode materials for next-generation lithium-ion batteries (LIBs). Among them, spinel HEOs with vacant lattice sites allowing for lithium insertion and diffusion seem particularly attractive. In this work, electrospun oxygen-deficient (Mn,Fe,Co,Ni,Zn) HEO nanofibers are produced under environmentally friendly calcination conditions and evaluated as anode active material in LIBs. A thorough investigation of the material properties and Li+ storage mechanism is carried out by several analytical techniques, including ex situ synchrotron X-ray absorption spectroscopy. The lithiation process is elucidated in terms of lithium insertion, cation migration, and metal-forming conversion reaction. The process is not fully reversible and the reduction of cations to the metallic form is not complete. In particular, iron, cobalt, and nickel, initially present mainly as Fe3+ , Co3+ /Co2+ , and Ni2+ , undergo reduction to Fe0 , Co0 , and Ni0 to different extent (Fe < Co < Ni). Manganese undergoes partial reduction to Mn3+ /Mn2+ and, upon re-oxidation, does not revert to the pristine oxidation state (+4). Zn2+ cations do not electrochemically participate in the conversion reaction, but migrating from tetrahedral to octahedral positions, they facilitate Li-ion transport within lattice channels opened by their migration. Partially reversible crystal phase transitions are observed.

11.
Angew Chem Int Ed Engl ; 62(27): e202305353, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37186081

ABSTRACT

Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self-assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time-resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full-field electro-dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule-guided self-assembly can be specifically designed to follow a bottom-up chiral transfer pathway.

12.
Small ; 19(33): e2301485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086126

ABSTRACT

Metal oxide semiconductor (MOS) thin films are of critical importance to both fundamental research and practical applications of gas sensors. Herein, a high-performance H2 sensor based on palladium (Pd) and rhodium (Rh) co-functionalized Fe2 O3 films with an ultrathin thickness of 8.9 nm deposited by using atomic layer deposition is reported. The sensor delivers an exceptional response of 105.9 toward 10 ppm H2 at 230 °C, as well as high selectivity, immunity to humidity, and low detection limit (43 ppb), which are superior to the reported MOS sensors. Importantly, the Fe2 O3 film sensor under dynamic H2 detection is for the first time observed by operando transmission electron microscopy, which provides deterministic evidence for structure evolution of MOS during sensing reactions. To further reveal the sensing mechanism, density functional theory calculations are performed to elucidate the sensitization effect of PdRh catalysts. Mechanistic studies suggest that Pd promotes the adsorption and dissociation of H2 to generate PdHx , while Rh promotes the dissociation of oxygen adsorbed on the surface, thereby jointly promoting the redox reactions on the films. A wireless H2 detection system is also successfully demonstrated using the thin film sensors, certifying a great potential of the strategy to practical sensors.

13.
Angew Chem Int Ed Engl ; 62(21): e202301021, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36876918

ABSTRACT

Metal-organic frameworks (MOFs) with encapsulated nanoparticles (NPs) enjoy a vastly expanded application potential in catalysis, filtration, and sensing. The selection of particular modified core-NPs has yielded partial successes in overcoming lattice mismatch. However, restrictions on the choice of NPs not only limit the diversity, but also affect the properties of the hybrid materials. Here, we show a versatile synthesis strategy using a representative set of seven MOF-shells and six NP-cores that are fine-tuned to incorporate from single to hundreds of cores in mono-, bi-, tri- and quaternary composites. This method does not require the presence of any specific surface structures or functionalities on the pre-formed cores. Our key point is to regulate the diffusion rate of alkaline vapors that deprotonate organic linkers and trigger the controlled MOF-growth and encapsulation of NPs. This strategy is expected to pave the way for the exploration of more sophisticated MOF-nanohybrids.

14.
Phys Chem Chem Phys ; 25(3): 2212-2226, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36594637

ABSTRACT

High-entropy oxide nanofibers, based on equimolar (Cr,Mn,Fe,Co,Ni), (Cr,Mn,Fe,Co,Zn) and (Cr,Mn,Fe,Ni,Zn) combinations, were prepared by electrospinning followed by calcination. The obtained hollow nanofibers exhibited a porous structure consisting of interconnected nearly strain-free (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4, (Cr1/5Mn1/5Fe1/5Co1/5Zn1/5)3O4 and (Cr1/5Mn1/5Fe1/5Ni1/5Zn1/5)3O4 single crystals with a pure Fd3̄m spinel structure. Oxidation state of the cations at the nanofiber surface was assessed by X-ray photoelectron spectroscopy and cation distributions were proposed satisfying electroneutrality and optimizing octahedral stabilization. The magnetic data are consistent with a distribution of cations that satisfies the energetic preferences for octahedral vs. tetrahedral sites and is random only within the octahedral and tetrahedral sublattices. The nanofibers are ferrimagnets with relatively low critical temperature more similar to cubic chromites and manganites than to ferrites. Replacing the magnetic cations Co or Ni with non-magnetic Zn lowers the critical temperature from 374 K (Cr,Mn,Fe,Co,Ni) to 233 and 105 K for (Cr,Mn,Fe,Ni,Zn) and (Cr,Mn,Fe,Co,Zn), respectively. The latter nanofibers additionally have a low temperature transition to a reentrant spin-glass-like state.

15.
ACS Appl Mater Interfaces ; 15(1): 795-805, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36542687

ABSTRACT

Niobium pentoxides have received considerable attention and are promising anode materials for lithium-ion batteries (LIBs), due to their fast Li storage kinetics and high capacity. However, their cycling stability and rate performance are still limited owing to their intrinsic insulating properties and structural degradation during charging and discharging. Herein, a series of mesoporous Nb2O5@TiO2 core-shell spherical heterostructures have been prepared for the first time by a sol-gel method and investigated as anode materials in LIBs. Mesoporosity can provide numerous open and short pathways for Li+ diffusion; meanwhile, heterostructures can simultaneously enhance the electronic conductivity and thus improve the rate capability. The TiO2 coating layer shows robust crystalline skeletons during repeated lithium insertion and extraction processes, retaining high structural integrity and, thereby, enhancing cycling stability. The electrochemical behavior is strongly dependent on the thickness of the TiO2 layer. After optimization, a mesoporous Nb2O5@TiO2 core-shell structure with a ∼13 nm thick TiO2 layer delivers a high specific capacity of 136 mA h g-1 at 5 A g-1 and exceptional cycling stability (88.3% retention over 1000 cycles at 0.5 A g-1). This work provides a facile strategy to obtain mesoporous Nb2O5@TiO2 core-shell spherical structures and underlines the importance of structural engineering for improving the performance of battery materials.

16.
Nanoscale ; 15(3): 1136-1144, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-35880665

ABSTRACT

Changes in electronic and compositional structures of Pt-Ni electrocatalysts with 44% of Ni fraction with repeated chemical dealloying have been studied. By comparing the Pt-enriched surfaces formed using hydroquinone and sulfuric acid as a leaching agent, we found that hydroquinone generated Pt-enriched surfaces exhibit the highest oxygen reduction reaction (ORR) activity after repeating the treatment twice. In particular, it was found that while sulfuric acid causes an uncontrollable dissolution of Ni clusters, the unique selectivity of hydroquinone allows the preferential dissolution of Ni atoms alloyed with Pt. Despite its wide usage in the field, the results show that traditional acid leaching is unsuitable for Pt-Ni alloys with a high Ni content and an incomplete alloying level. We finally proved that the unique and lasting selectivity of hydroquinone enables an incompletely alloyed Pt-Ni catalyst to obtain a highly ORR active Pt shell region without an extensive loss of Ni.

17.
J Sci Food Agric ; 103(6): 2786-2793, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36583522

ABSTRACT

BACKGROUND: Pancreatic lipase (PL) is a key lipolytic enzyme in humans for the digestion and absorption of dietary fats. Thereby, PL is a well-recognized target in the management of obesity and its inhibition attracts the interest of researchers globally. The screening of new natural PL inhibitors as alternative strategy to the synthesis of chemical ones represents nowadays a hot topic in research. The main challenge in this matter is the lack of a universal analytical method allowing the monitoring of PL activity and the reliable quantification of lipid digestion products. RESULTS: The (normal phase)-high-performance liquid chromatography-evaporative light scattering detector [(NP)-HPLC-ELSD] method proposed in this work represents a direct and rapid strategy to simultaneously quantify the products obtained from in vitro PL digestion. As one of the main novelties, the triacylglycerol (TAG) fraction from extra-virgin olive oil was selected as natural substrate. The PL activity was measured by monitoring the levels of remaining TAGs and formed free fatty acids (FFAs), using Orlistat as known inhibitor. The method validation confirmed the adequacy of the analytical method for quantitative purposes, showing high recovery percentage values (between 99% and 103%) and low relative standard deviation (RSD%) values (between 2% and 7%) for triolein and oleic acid standard solutions, as well as appreciably low limit of detection (LOD) and limit of quantification (LOQ) values (respectively 58 and 177 ng mL-1 for triolein; 198 and 602 ng mL-1 for oleic acid). Finally, the developed HPLC-ELSD method was successfully applied to evaluate the inhibitory effect of a polyphenolic extract obtained from apple pomace. The results showed a comparable inhibition degree between a 4.0 mg mL-1 apple pomace solution and a 1.0 µg mL-1 Orlistat solution. CONCLUSION: The proposed innovative method reveals highly sensitive and simple to follow the fate of PL digestion, thus opening the way to further investigations in the research of new potentially anti-obesity compounds. © 2022 Society of Chemical Industry.


Subject(s)
Lipase , Triolein , Humans , Chromatography, High Pressure Liquid/methods , Lipase/antagonists & inhibitors , Obesity , Oleic Acids , Orlistat
18.
Molecules ; 27(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36500333

ABSTRACT

Pumpkin is considered a functional food with beneficial effects on human health due to the presence of interesting bioactives. In this research, the impact of unconventional ultrasound-assisted extraction (UAE) and microwave-assisted extraction techniques on the recovery of total non-polar carotenoids from Cucurbita moschata pulp was investigated. A binary (hexane:isopropanol, 60:40 v/v) and a ternary (hexane:acetone:ethanol, 50:25:25 v/v/v) mixture were tested. The extracts were characterized for their antioxidant properties by in vitro assays, while the carotenoid profiling was determined by high-performance liquid chromatography coupled with a diode array detector. UAE with the binary mixture (30 min, 45 °C) was the most successful extracting technique, taking into consideration all analytical data and their correlations. In parallel, solid lipid nanoparticles (SLN) were optimized for the encapsulation of the extract, using ß-carotene as a reference compound. SLN, loaded with up to 1% ß-carotene, had dimensions (~350 nm) compatible with increased intestinal absorption. Additionally, the ABTS ((2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay showed that the technological process did not change the antioxidant capacity of ß-carotene. These SLN will be used to load an even higher percentage of the extract without affecting their dimensions due to its liquid nature and higher miscibility with the lipid with respect to the solid ß-carotene.


Subject(s)
Carotenoids , Cucurbita , Humans , Carotenoids/chemistry , Cucurbita/chemistry , Hexanes , beta Carotene , Antioxidants/chemistry , Plant Extracts/chemistry
19.
Mater Horiz ; 9(11): 2797-2808, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36004811

ABSTRACT

We introduce for the first time a core-shell structure composed of nanostructured self-standing titania nanotubes (TNT, light absorber) filled with Au nanowire (AuNW) array (electrons collector) applied to the photoelectrocatalytic water splitting. Its activity is four times higher than that of reference TNT-Ti obtained with the same anodizing conditions. The composite photoanode brings a distinct photocurrent generation (8 mA cm-2 at 1.65 V vs. RHE), and a high incident photon to current efficiency of 35% obtained under UV light illumination. Moreover, the full system concept of selected constitutional materials, based on Au noble metal and the very stable semiconductor TiO2, ensures a stable performance over a long-time range with no photocurrent loss during 100 on-off cycles of light illumination, after 12 h constant illumination and after one-month storage in air. We provide experimental evidence by photoelectron spectroscopy measurements, confirming that the electronic structure of TNT-AuNW is rectifying for electrons and ohmic for holes, while the electrochemical characterization confirms that the specific architecture of the photoanode supports electron separation due to the presence of a Schottky type contact and fast electron transport through the Au nanowires. Although the composite material shows an unchanged electrochemical band gap, typical for plain TiO2, we find this material to be an innovative platform for efficient photoelectrochemical water splitting under UV light illumination, with significant potential for further modifications, for example extension into the visible light regime.

20.
Adv Sci (Weinh) ; 9(23): e2104599, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35712776

ABSTRACT

Atomic layer deposition (ALD) is a deposition technique well-suited to produce high-quality thin film materials at the nanoscale for applications in transistors. This review comprehensively describes the latest developments in ALD of metal oxides (MOs) and chalcogenides with tunable bandgaps, compositions, and nanostructures for the fabrication of high-performance field-effect transistors. By ALD various n-type and p-type MOs, including binary and multinary semiconductors, can be deposited and applied as channel materials, transparent electrodes, or electrode interlayers for improving charge-transport and switching properties of transistors. On the other hand, MO insulators by ALD are applied as dielectrics or protecting/encapsulating layers for enhancing device performance and stability. Metal chalcogenide semiconductors and their heterostructures made by ALD have shown great promise as novel building blocks to fabricate single channel or heterojunction materials in transistors. By correlating the device performance to the structural and chemical properties of the ALD materials, clear structure-property relations can be proposed, which can help to design better-performing transistors. Finally, a brief concluding remark on these ALD materials and devices is presented, with insights into upcoming opportunities and challenges for future electronics and integrated applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...