Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585834

ABSTRACT

Inflammation is a key contributor to stroke pathogenesis and drives exacerbated brain damage leading to poor outcome. Interleukin-1 (IL-1) is an important regulator of post-stroke inflammation, and blocking its actions is beneficial in pre-clinical stroke models and safe in the clinical setting. IL-1α and IL-1ß are the two major IL-1 type 1 receptor (IL-1R1) agonists from the IL-1 family. The distinct roles of both isoforms, and particularly that of IL-1α, remain largely unknown. Here we show that IL-1α and IL-1ß have different spatio-temporal expression profiles in the brain after experimental stroke, with early microglial IL-1α expression (4 h) and delayed IL-1ß expression in infiltrated neutrophils and a small microglial subset (24-72 h). We examined the specific contribution of microglial-derived IL-1α in experimental permanent and transient ischemic stroke through cell-specific tamoxifen-inducible Cre-loxP-mediated recombination. Microglial IL-1α deletion did not influence acute brain damage, cerebral blood flow, IL-1ß expression, neutrophil infiltration, microglial nor endothelial activation after ischemic stroke. However, microglial IL-1α knock out (KO) mice showed reduced peri-infarct vessel density and reactive astrogliosis at 14 days post-stroke, alongside a worse functional recovery. RNA sequencing analysis and subsequent pathway analysis on ipsilateral/contralateral cortex 4 h after stroke revealed a downregulation of the neuronal CREB signaling pathway in microglial IL-1α KO compared to WT mice. Our study identifies for the first time a critical role for microglial IL-1α on neuronal activity, neurorepair and functional recovery after stroke, highlighting the importance of targeting specific IL-1 mechanisms in brain injury to develop more effective therapies.

2.
J Thorac Cardiovasc Surg ; 167(5): e146-e158, 2024 May.
Article in English | MEDLINE | ID: mdl-37951532

ABSTRACT

OBJECTIVE: Endothelial to mesenchymal transition may represent a key link between inflammatory stress and endothelial dysfunction seen in aortic aneurysm disease. Endothelial to mesenchymal transition is regulated by interleukin-1ß, and previous work has demonstrated an essential role of interleukin-1 signaling in experimental aortic aneurysm models. We hypothesize that endothelial to mesenchymal transition is present in murine aortic aneurysms, and loss of interleukin-1 signaling attenuates this process. METHODS: Murine aortic aneurysms were created in novel CDH5-Cre lineage tracking mice by treating the intact aorta with peri-adventitial elastase. Endothelial to mesenchymal transition transcription factors as well as endothelial and mesenchymal cell markers were analyzed via immunohistochemistry and immunofluorescence (n = 10/group). To determine the role of interleukin-1 signaling, endothelial-specific interleukin-1 receptor 1 knockout and wild-type mice (n = 10/group) were treated with elastase. Additionally, C57/BL6 mice were treated with the interleukin-1 receptor 1 antagonist Anakinra (n = 7) or vehicle (n = 8). RESULTS: Elastase treatment yielded greater aortic dilation compared with controls (elastase 97.0% ± 34.0%; control 5.3% ± 4.8%; P < .001). Genetic deletion of interleukin-1 receptor 1 attenuated aortic dilation (control 126.7% ± 38.7%; interleukin-1 receptor 1 knockout 35.2% ± 14.7%; P < .001), as did pharmacologic inhibition of interleukin-1 receptor 1 with Anakinra (vehicle 146.3% ± 30.1%; Anakinra 63.5% ± 23.3%; P < .001). Elastase treatment resulted in upregulation of endothelial to mesenchymal transition transcription factors (Snail, Slug, Twist, ZNF) and mesenchymal cell markers (S100, alpha smooth muscle actin) and loss of endothelial cell markers (vascular endothelial cadherin, endothelial nitric oxide synthase, von Willebrand factor). These changes were attenuated by interleukin-1 receptor 1 knockout and Anakinra treatment. CONCLUSIONS: Endothelial to mesenchymal transition occurs in aortic aneurysm disease and is attenuated by loss of interleukin-1 signaling. Endothelial dysfunction through endothelial to mesenchymal transition represents a new and novel pathway in understanding aortic aneurysm disease and may be a potential target for future treatment.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Aneurysm , Aortic Diseases , Mice , Animals , Interleukin 1 Receptor Antagonist Protein/pharmacology , Mice, Knockout , Receptors, Interleukin-1/genetics , Interleukin-1beta , Pancreatic Elastase , Transcription Factors , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Disease Models, Animal , Mice, Inbred C57BL
3.
Hum Cell ; 37(1): 154-166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37987924

ABSTRACT

Promising preclinical stroke research has not yielded meaningful and significant success in clinical trials. This lack of success has prompted the need for refinement of preclinical studies with the intent to optimize the chances of clinical success. Regenerative medicine, especially using mesenchymal stem/stromal cells (MSCs), has gained popularity in the last decade for treating many disorders, including central nervous system (CNS), such as stroke. In addition to less stringent ethical constraints, the ample availability of MSCs also makes them an attractive alternative to totipotent and other pluripotent stem cells. The ability of MSCs to differentiate into neurons and other brain parenchymal and immune cells makes them a promising therapy for stroke. However, these cells also have some drawbacks that, if not addressed, will render MSCs unfit for treating ischaemic stroke. In this review, we highlighted the molecular and cellular changes that occur following an ischaemic stroke (IS) incidence and discussed the physiological properties of MSCs suitable for tackling these changes. We also went further to discuss the major drawbacks of utilizing MSCs in IS and how adequate priming using both hypoxia and interleukin-1 can optimize the beneficial properties of MSCs while eliminating these drawbacks.


Subject(s)
Brain Ischemia , Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Humans , Stroke/therapy , Brain Ischemia/therapy , Interleukin-1 , Hypoxia
4.
Transl Stroke Res ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853252

ABSTRACT

Intracerebral haemorrhage (ICH) is the deadliest form of stroke, but current treatment options are limited, meaning ICH survivors are often left with life-changing disabilities. The significant unmet clinical need and socioeconomic burden of ICH mean novel regenerative medicine approaches are gaining interest. To facilitate the regeneration of the ICH lesion, injectable biomimetic hydrogels are proposed as both scaffolds for endogenous repair and delivery platforms for pro-regenerative therapies. In this paper, the objective was to explore whether injection of a novel self-assembling peptide hydrogel (SAPH) Alpha2 was feasible, safe and could stimulate brain tissue regeneration, in a collagenase-induced ICH model in rats. Alpha2 was administered intracerebrally at 7 days post ICH and functional outcome measures, histological markers of damage and repair and RNA-sequencing were investigated for up to 8 weeks. The hydrogel Alpha2 was safe, well-tolerated and was retained in the lesion for several weeks, where it allowed infiltration of host cells. The hydrogel had a largely neutral effect on functional outcomes and expression of angiogenic and neurogenic markers but led to increased numbers of proliferating cells. RNAseq and pathway analysis showed that ICH altered genes related to inflammatory and phagocytic pathways, and these changes were also observed after administration of hydrogel. Overall, the results show that the novel hydrogel was safe when injected intracerebrally and had no negative effects on functional outcomes but increased cell proliferation. To elicit a regenerative effect, future studies could use a functionalised hydrogel or combine it with an adjunct therapy.

5.
J Cereb Blood Flow Metab ; 43(12): 2040-2048, 2023 12.
Article in English | MEDLINE | ID: mdl-37602422

ABSTRACT

Mesenchymal stem cell (MSC) pre-conditioning with interleukin-1 alpha (IL-1ɑ) drives MSCs toward a potent anti-inflammatory phenotype. The aim of this study was to assess the therapeutic potential of intra-arterially administered IL-1ɑ preconditioned MSCs, after experimental cerebral ischaemia in mice. After 3 h from the start of middle cerebral artery occlusion, animals were treated with vehicle, 9.1 × 104 non-conditioned or IL-1ɑ preconditioned MSCs by intra-arterial administration. Animals were allowed to recover for 1.5 h after treatment to measure cerebral blood flow (CBF), and 3 days or 14 days post-stroke to evaluate lesion volume and functional outcomes. At 3-days post-stroke preconditioned MSCs reduced (by 67%) lesion volume and increased CBF (by 32%) compared to vehicle, while non-conditioned MSCs had no effect. A separate cohort of animals recovered to 14 days post-stroke also showed reduced infarct volume (by 51%) at 48 h (assessed by MRI) and better functional recovery at 14 days when treated with preconditioned MSCs when compared to vehicle. Preconditioning MSCs with IL-1α increases their neuroprotective capability and improves functional recovery after delayed intra-arterial administration. With increasing use of thrombectomy, the adjunct use of preconditioned MSCs therefore represents a highly relevant therapy to improve outcomes in ischemic stroke.


Subject(s)
Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Humans , Mice , Animals , Ischemic Stroke/metabolism , Interleukin-1alpha/metabolism , Mesenchymal Stem Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism
6.
J Neuroimmunol ; 373: 577993, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36327619

ABSTRACT

Laminin-10 (LM-10) is a key regulator of blood-brain barrier (BBB) repair after hypoxia and inflammation. Here we investigated the signalling mechanisms regulated by LM-10 in human brain endothelial cell line hCMEC/D3 in response to interleukin(IL)-1beta(ß) in vitro. LM-10 promoted endothelial proliferation and repair of an endothelial monolayer after scratch injury, and upregulated IL-1ß-induced ICAM-1 and VCAM-1 expression. IL-1ß and LM-10 regulated YAP signalling pathway in endothelial cells leading to differential expression of YAP target genes, ctgf and serpine-1, providing evidence that the YAP signalling pathway could be a new therapeutic target for the treatment of BBB dysfunction in CNS diseases.


Subject(s)
Endothelial Cells , Laminin , Humans , Endothelial Cells/metabolism , Cells, Cultured , Laminin/pharmacology , Laminin/metabolism , Extracellular Matrix/metabolism , Blood-Brain Barrier/metabolism
7.
Nat Commun ; 13(1): 5399, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104342

ABSTRACT

Cancer and cardiovascular disease (CVD) share common risk factors such as dyslipidemia, obesity and inflammation. However, the role of pro-atherogenic environment and its associated low-grade inflammation in tumor progression remains underexplored. Here we show that feeding C57BL/6J mice with a non-obesogenic high fat high cholesterol diet (HFHCD) for two weeks to induce mild dyslipidemia, increases the pool of circulating Ly6Chi monocytes available for initial melanoma development, in an IL-1ß-dependent manner. Descendants of circulating myeloid cells, which accumulate in the tumor microenvironment of mice under HFHCD, heighten pro-angiogenic and immunosuppressive activities locally. Limiting myeloid cell accumulation or targeting VEGF-A production by myeloid cells decrease HFHCD-induced tumor growth acceleration. Reverting the HFHCD to a chow diet at the time of tumor implantation protects against tumor growth. Together, these data shed light on cross-disease communication between cardiovascular pathologies and cancer.


Subject(s)
Dyslipidemias , Monocytes , Animals , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Dyslipidemias/pathology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Monocytes/pathology , Myeloid Cells/pathology , Tumor Microenvironment
8.
Adv Healthc Mater ; 10(16): e2100455, 2021 08.
Article in English | MEDLINE | ID: mdl-34197036

ABSTRACT

Intracerebral hemorrhage (ICH) is a deadly and debilitating type of stroke, caused by the rupture of cerebral blood vessels. To date, there are no restorative interventions approved for use in ICH patients, highlighting a critical unmet need. ICH shares some pathological features with other acute brain injuries such as ischemic stroke (IS) and traumatic brain injury (TBI), including the loss of brain tissue, disruption of the blood-brain barrier, and activation of a potent inflammatory response. New biomaterials such as hydrogels have been recently investigated for their therapeutic benefit in both experimental IS and TBI, owing to their provision of architectural support for damaged brain tissue and ability to deliver cellular and molecular therapies. Conversely, research on the use of hydrogels for ICH therapy is still in its infancy, with very few published reports investigating their therapeutic potential. Here, the published use of hydrogels in experimental ICH is commented upon and how approaches reported in the IS and TBI fields may be applied to ICH research to inform the design of future therapies is described. Unique aspects of ICH that are distinct from IS and TBI that should be considered when translating biomaterial-based therapies between disease models are also highlighted.


Subject(s)
Brain Injuries, Traumatic , Brain Ischemia , Ischemic Stroke , Stroke , Brain Ischemia/therapy , Cerebral Hemorrhage/therapy , Humans , Hydrogels , Stroke/therapy
9.
NPJ Breast Cancer ; 7(1): 95, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34290237

ABSTRACT

Breast cancer bone metastasis is currently incurable, ~75% of patients with late-stage breast cancer develop disease recurrence in bone and available treatments are only palliative. We have previously shown that production of the pro-inflammatory cytokine interleukin-1B (IL-1B) by breast cancer cells drives bone metastasis in patients and in preclinical in vivo models. In the current study, we have investigated how IL-1B from tumour cells and the microenvironment interact to affect primary tumour growth and bone metastasis through regulation of the immune system, and whether targeting IL-1 driven changes to the immune response improves standard of care therapy for breast cancer bone metastasis. Using syngeneic IL-1B/IL1R1 knock out mouse models in combination with genetic manipulation of tumour cells to overexpress IL-1B/IL1R1, we found that IL-1B signalling elicited an opposite response in primary tumours compared with bone metastases. In primary tumours, IL-1B inhibited growth, by impairing the infiltration of innate immune cell subsets with potential anti-cancer functions but promoted enhanced tumour cell migration. In bone, IL-1B stimulated the development of osteolytic metastases. In syngeneic models of breast cancer, combining standard of care treatments (Doxorubicin and Zoledronic acid) with the IL-1 receptor antagonist Anakinra inhibited both primary tumour growth and metastasis. Anakinra had opposite effects on the immune response compared to standard of care treatment, and its anti-inflammatory signature was maintained in the combination therapy. These data suggest that targeting IL-1B signalling may provide a useful therapeutic approach to inhibit bone metastasis and improve efficacy of current treatments for breast cancer patients.

10.
Transl Stroke Res ; 12(1): 1-14, 2021 02.
Article in English | MEDLINE | ID: mdl-32862401

ABSTRACT

Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.


Subject(s)
Brain Ischemia/pathology , Neurogenesis/physiology , Recovery of Function/physiology , Stroke/pathology , Animals , Brain/cytology , Brain/pathology , Brain/physiology , Brain Ischemia/therapy , Humans , Neurogenesis/drug effects , Neuroprotective Agents/administration & dosage , Stem Cell Transplantation/trends , Stroke/therapy
11.
J Neuroimmunol ; 346: 577318, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32682140

ABSTRACT

Stroke is the leading cause of death and the main cause of disability in surviving patients. The detrimental interaction between immune cells, glial cells, and matrix components in stroke pathology results in persistent inflammation that progresses to fibrosis. A substantial effort is being directed toward understanding the exact neuroinflammatory events that take place as a result of stroke. The initiation of a potent cytokine response, along with immune cell activation and infiltration in the ischemic core, has massive acute deleterious effects, generally exacerbated by comorbid inflammatory conditions. There is secondary neuroinflammation that promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. This highlights the need for a better understanding of the neuroinflammatory and fibrotic processes, as well as the need to identify new mechanisms and potential modulators. In this review, we summarize several aspects of stroke-induced inflammation, fibrosis, and include a discussion of cytokine inhibitors/inducers, immune cells, and fibro-inflammation signaling inhibitors in order to identify new pharmacological means of intervention.

12.
J Mol Med (Berl) ; 98(7): 923-930, 2020 07.
Article in English | MEDLINE | ID: mdl-32468079

ABSTRACT

The pro-inflammatory cytokine interleukin-1 (IL-1) plays a key role in many physiological processes and during the inflammatory and immune response to most common diseases. IL-1 exists as two agonists, IL-1α and IL-1ß that bind to the only signaling IL-1 type 1 receptor (IL-1R1), while a second decoy IL-1 type 2 receptor (IL-1R2) binds both forms of IL-1 without inducing cell signaling. The field of immunology and inflammation research has, over the past 35 years, unraveled many mechanisms of IL-1 actions, through in vitro manipulation of the IL-1 system or by using genetically engineered mouse models that lack either member of the IL-1 family in ubiquitous constitutive manner. However, the limitation of global mouse knockout technology has significantly hampered our understanding of the precise mechanisms of IL-1 actions in animal models of disease. Here we report and review the recent generation of new conditional mouse mutants in which exons of Il1a, Il1b, Il1r1, and Il1r2 genes flanked by loxP sites (fl/fl) can be deleted in cell-/tissue-specific constitutive or inducible manner by Cre recombinase expression. Hence, IL-1αfl/fl, IL-1ßfl/fl, IL-1R1fl/fl, and IL-1R2fl/fl mice constitute a new toolbox that will provide a step change in our understanding of the cell-specific role of IL-1 and its receptor in health and disease and the potential development of targeted IL-1 therapies.


Subject(s)
Interleukin-1/metabolism , Animals , Humans , Inflammation/metabolism , Ligands , Receptors, Interleukin-1/metabolism , Signal Transduction/physiology
13.
EMBO Mol Med ; 12(3): e11185, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32057196

ABSTRACT

Mucopolysaccharidosis IIIA is a neuronopathic lysosomal storage disease, characterised by heparan sulphate and other substrates accumulating in the brain. Patients develop behavioural disturbances and cognitive decline, a possible consequence of neuroinflammation and abnormal substrate accumulation. Interleukin (IL)-1ß and interleukin-1 receptor antagonist (IL-1Ra) expression were significantly increased in both murine models and human MPSIII patients. We identified pathogenic mechanisms of inflammasome activation, including that disease-specific 2-O-sulphated heparan sulphate was essential for priming an IL-1ß response via the Toll-like receptor 4 complex. However, mucopolysaccharidosis IIIA primary and secondary storage substrates, such as amyloid beta, were both required to activate the NLRP3 inflammasome and initiate IL-1ß secretion. IL-1 blockade in mucopolysaccharidosis IIIA mice using IL-1 receptor type 1 knockout or haematopoietic stem cell gene therapy over-expressing IL-1Ra reduced gliosis and completely prevented behavioural phenotypes. In conclusion, we demonstrate that IL-1 drives neuroinflammation, behavioural abnormality and cognitive decline in mucopolysaccharidosis IIIA, highlighting haematopoietic stem cell gene therapy treatment with IL-1Ra as a potential neuronopathic lysosomal disease treatment.


Subject(s)
Cognition , Genetic Therapy , Hematopoietic Stem Cells , Interleukin 1 Receptor Antagonist Protein , Mucopolysaccharidosis III/therapy , Adolescent , Amyloid beta-Peptides , Animals , Child , Child, Preschool , Female , Humans , Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL
14.
Stem Cell Res Ther ; 11(1): 32, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964413

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) hold great potential as a therapy for stroke and have previously been shown to promote recovery in preclinical models of cerebral ischaemia. MSCs secrete a wide range of growth factors, chemokines, cytokines and extracellular vesicles-collectively termed the secretome. In this study, we assessed for the first time the efficacy of the IL-1α-primed MSC-derived secretome on brain injury and functional recovery after cerebral ischaemia. METHODS: Stroke was induced in male C57BL/6 mice using the intraluminal filament model of middle cerebral artery occlusion. Conditioned medium from IL-1α-primed MSCs or vehicle was administered at the time of reperfusion or at 24 h post-stroke by subcutaneous injection. RESULTS: IL-1α-primed MSC-derived conditioned medium treatment at the time of stroke led to a ~ 30% reduction in lesion volume at 48 h and was associated with modest improvements in body mass gain, 28-point neurological score and nest building. Administration of MSC-derived conditioned medium at 24 h post-stroke led to improved nest building and neurological score despite no observed differences in lesion volume at day 2 post-stroke. CONCLUSIONS: Our results show for the first time that the administration of conditioned medium from IL-1α-primed MSCs leads to improvements in behavioural outcomes independently of neuroprotection.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Culture Media, Conditioned/chemistry , Interleukin-1/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Stroke/therapy , Animals , Humans , Male , Mice
15.
BMJ Open Sci ; 4(1): e100047, 2020.
Article in English | MEDLINE | ID: mdl-35047689

ABSTRACT

OBJECTIVES: Currently there is a paucity of clinically available regenerative therapies for stroke. Extracellular vesicles (EV) have been investigated for their potential as modulators of regeneration in the poststroke brain. This systematic review and meta-analysis aims to provide a summary of the efficacy of therapeutic EVs in preclinical stroke models, to inform future research in this emerging field. METHODS: Studies were identified by a comprehensive literature search of two online sources and subsequent screening. Studies using lesion volume or neurological score as outcome measures were included. Standardised mean difference (SMD) and 95% CIs were calculated using a restricted maximum likelihood random effects model. Publication bias was assessed with Egger's regression and presented as funnel plots with trim and fill analysis. Subgroup analysis was performed to assess the effects of different study variables. Study quality and risk of bias were assessed using the CAMARADES checklist. RESULTS: A total of 20 publications were included in the systematic review, of which 19 were assessed in the meta-analysis (43 comparisons). Overall, EV interventions improved lesion volume (SMD: -1.95, 95% CI -2.72 to 1.18) and neurological scores (SMD: -1.26, 95% CI -1.64 to 0.87) compared with control groups. Funnel plots were asymmetrical suggesting publication bias, and trim and fill analysis predicted seven missing studies for lesion volume. Subgroup analysis suggested administration at 0-23 hours after stroke was the most effective timepoint for EV treatment. The median score on the CAMARADES checklist was 7 (IQR: 5-8). CONCLUSIONS: EVs may offer a promising new avenue for stroke therapies, as EV-based interventions had positive impacts on lesion volume and neurological score in preclinical stroke models. PROSPERO REGISTRATION NUMBER: CRD42019134925.

16.
J Neuroinflammation ; 16(1): 222, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31727174

ABSTRACT

BACKGROUND: Stroke remains a leading cause of death and disability worldwide despite recent treatment breakthroughs. A primary event in stroke pathogenesis is the development of a potent and deleterious local and peripheral inflammatory response regulated by the pro-inflammatory cytokine interleukin-1 (IL-1). While the role of IL-1ß (main released isoform) has been well studied in stroke, the role of the IL-1α isoform remains largely unknown. With increasing utilization of intravenous tissue plasminogen activator (t-PA) or thrombectomy to pharmacologically or mechanically remove ischemic stroke causing blood clots, respectively, there is interest in pairing successful cerebrovascular recanalization with neurotherapeutic pharmacological interventions (Fraser et al., J Cereb Blood Flow Metab 37:3531-3543, 2017; Hill et al., Lancet Neurol 11:942-950, 2012; Amaro et al., Stroke 47:2874-2876, 2016). METHODS: Transient stroke was induced in mice via one of two methods. One group of mice were subjected to tandem ipsilateral common carotid artery and middle cerebral artery occlusion, while another group underwent the filament-based middle cerebral artery occlusion. We have recently developed an animal model of intra-arterial (IA) drug administration after recanalization (Maniskas et al., J Neurosci Met 240:22-27, 2015). Sub groups of the mice were treated with either saline or Il-1α, wherein the drug was administered either acutely (immediately after surgery) or subacutely (on the third day after stroke). This was followed by behavioral and histological analyses. RESULTS: We now show in the above-mentioned mouse stroke models (transient tandem ipsilateral common carotid artery (CCA) and middle cerebral artery occlusion (MCA) occlusion, MCA suture occlusion) that IL-1α is neuroprotective when acutely given either intravenously (IV) or IA at low sub-pathologic doses. Furthermore, while IV administration induces transient hemodynamic side effects without affecting systemic markers of inflammation, IA delivery further improves overall outcomes while eliminating these side effects. Additionally, we show that delayed/subacute IV IL-1α administration ameliorates functional deficit and promotes neurorepair. CONCLUSIONS: Taken together, our present study suggests for the first time that IL-1α could, unexpectedly, be an effective ischemic stroke therapy with a broad therapeutic window.


Subject(s)
Brain Ischemia/drug therapy , Interleukin-1alpha/therapeutic use , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/pathology , Brain Ischemia/pathology , Disease Models, Animal , Interleukin-1alpha/pharmacology , Male , Mice , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Recovery of Function/drug effects , Stroke/pathology
17.
AMRC Open Res ; 1: 10, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31602423

ABSTRACT

Introduction: The acute phase protein pentraxin 3 (PTX3) is known for its anti-inflammatory effects through downregulating neutrophil transmigration during peripheral inflammation. Furthermore, we have previously demonstrated a neuroprotective and neuroreparative effect of PTX3 after cerebral ischaemia. Here we investigated, to our knowledge for the first time, the role of PTX3 in neutrophil transmigration and neurotoxicity following lipopolysaccharide (LPS)-induced cerebral inflammation and cerebral ischaemia. Methods: Neutrophil transmigration through interleukin-1ß (IL-1ß) activated brain endothelium and neurotoxicity of neutrophils isolated from wild-type (WT) or PTX3 knock-out (KO) mice was assessed in vitro. Primary cortical neuronal death after treatment with transmigrated neutrophils was quantified by lactate dehydrogenase (LDH) assay. Cerebral inflammation or ischemia was induced in WT and PTX3 KO mice via intrastriatal LPS injection or by transient middle cerebral artery occlusion (MCAo) respectively. Subsequent neutrophil infiltration in the brain was assessed by immunohistochemistry and the expression of pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1ß by enzyme-linked immunosorbent assay (ELISA). Results: Neutrophils isolated from WT mice after intrastriatal LPS injection transmigrated significantly more through IL-1ß activated brain endothelium compared to neutrophils from PTX3 KO mice. Transmigrated WT and PTX3 KO neutrophils were significantly more neurotoxic than corresponding non-transmigrated neutrophils; however, no significant differences in neurotoxicity between genotypes were observed. PTX3 reduced the number of transmigrated neutrophils to the brain after intrastriatal LPS injection. Furthermore, PTX3 KO mice showed significantly increased levels of neutrophils in the brain after LPS administration or in the ischaemic hemisphere after MCAo, compared to WT mice. Conclusion: Our study shows that PTX3 regulates neutrophil transmigration in the CNS during neuroinflammation, demonstrating the potential of PTX3 as an effective therapeutic target in neuroinflammatory conditions.

18.
JCI Insight ; 52019 08 08.
Article in English | MEDLINE | ID: mdl-31393855

ABSTRACT

It has been hypothesized that interleukin-1alpha (IL-1α) is released from damaged cardiomyocytes following myocardial infarction (MI) and activates cardiac fibroblasts via its receptor (IL-1R1) to drive the early stages of cardiac remodeling. This study aimed to definitively test this hypothesis using cell type-specific IL-1α and IL-1R1 knockout (KO) mouse models. A floxed Il1α mouse was created and used to generate a cardiomyocyte-specific IL-1α KO mouse line (MIL1AKO). A tamoxifen-inducible fibroblast-specific IL-1R1 hemizygous KO mouse line (FIL1R1KO) was also generated. Mice underwent experimental MI (permanent left anterior descending coronary artery ligation) and cardiac function was determined 4 weeks later by conductance pressure-volume catheter analysis. Molecular markers of remodeling were evaluated at various time points by real-time RT-PCR and histology. MIL1AKO mice showed no difference in cardiac function or molecular markers of remodeling post-MI compared with littermate controls. In contrast, FIL1R1KO mice showed improved cardiac function and reduced remodeling markers post-MI compared with littermate controls. In conclusion, these data highlight a key role for the IL-1R1/cardiac fibroblast signaling axis in regulating post-MI remodeling and provide support for the continued development of anti-IL-1 therapies for improving cardiac function after MI. Cardiomyocyte-derived IL-1α was not an important contributor to post-MI remodeling in this model.


Subject(s)
Fibroblasts/metabolism , Myocardial Infarction/metabolism , Receptors, Interleukin-1 Type I/metabolism , Ventricular Remodeling/physiology , Animals , Cytokines/metabolism , Disease Models, Animal , Fibrosis/metabolism , Heart Failure , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Male , Mice , Mice, Knockout , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Receptors, Interleukin-1 Type I/genetics , Signal Transduction
19.
Proc Natl Acad Sci U S A ; 116(26): 13067-13076, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31182576

ABSTRACT

Neuroimmune interactions may contribute to severe pain and regional inflammatory and autonomic signs in complex regional pain syndrome (CRPS), a posttraumatic pain disorder. Here, we investigated peripheral and central immune mechanisms in a translational passive transfer trauma mouse model of CRPS. Small plantar skin-muscle incision was performed in female C57BL/6 mice treated daily with purified serum immunoglobulin G (IgG) from patients with longstanding CRPS or healthy volunteers followed by assessment of paw edema, hyperalgesia, inflammation, and central glial activation. CRPS IgG significantly increased and prolonged swelling and induced stable hyperalgesia of the incised paw compared with IgG from healthy controls. After a short-lasting paw inflammatory response in all groups, CRPS IgG-injected mice displayed sustained, profound microglia and astrocyte activation in the dorsal horn of the spinal cord and pain-related brain regions, indicating central sensitization. Genetic deletion of interleukin-1 (IL-1) using IL-1αß knockout (KO) mice and perioperative IL-1 receptor type 1 (IL-1R1) blockade with the drug anakinra, but not treatment with the glucocorticoid prednisolone, prevented these changes. Anakinra treatment also reversed the established sensitization phenotype when initiated 8 days after incision. Furthermore, with the generation of an IL-1ß floxed(fl/fl) mouse line, we demonstrated that CRPS IgG-induced changes are in part mediated by microglia-derived IL-1ß, suggesting that both peripheral and central inflammatory mechanisms contribute to the transferred disease phenotype. These results indicate that persistent CRPS is often contributed to by autoantibodies and highlight a potential therapeutic use for clinically licensed antagonists, such as anakinra, to prevent or treat CRPS via blocking IL-1 actions.


Subject(s)
Autoantibodies/immunology , Complex Regional Pain Syndromes/immunology , Immunoglobulin G/immunology , Interleukin-1alpha/immunology , Interleukin-1beta/immunology , Adult , Animals , Autoantibodies/administration & dosage , Autoantibodies/blood , Complex Regional Pain Syndromes/blood , Complex Regional Pain Syndromes/diagnosis , Complex Regional Pain Syndromes/drug therapy , Disease Models, Animal , Female , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lower Extremity/injuries , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Microglia/pathology , Middle Aged , Pain Measurement , Receptors, Interleukin-1 Type I/antagonists & inhibitors , Receptors, Interleukin-1 Type I/immunology , Receptors, Interleukin-1 Type I/metabolism , Spinal Cord Dorsal Horn/immunology , Spinal Cord Dorsal Horn/pathology
20.
J Cell Sci ; 132(11)2019 06 03.
Article in English | MEDLINE | ID: mdl-31076511

ABSTRACT

Endothelial cell (EC) sensing of fluid shear stress direction is a critical determinant of vascular health and disease. Unidirectional flow induces EC alignment and vascular homeostasis, whereas bidirectional flow has pathophysiological effects. ECs express several mechanoreceptors that respond to flow, but the mechanism for sensing shear stress direction is poorly understood. We determined, by using in vitro flow systems and magnetic tweezers, that ß1 integrin is a key sensor of force direction because it is activated by unidirectional, but not bidirectional, shearing forces. ß1 integrin activation by unidirectional force was amplified in ECs that were pre-sheared in the same direction, indicating that alignment and ß1 integrin activity has a feedforward interaction, which is a hallmark of system stability. En face staining and EC-specific genetic deletion studies in the murine aorta revealed that ß1 integrin is activated and is essential for EC alignment at sites of unidirectional flow but is not activated at sites of bidirectional flow. In summary, ß1 integrin sensing of unidirectional force is a key mechanism for decoding blood flow mechanics to promote vascular homeostasis.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Aorta/physiology , Integrin beta1/metabolism , Regional Blood Flow/physiology , Animals , Cell Line , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Integrin beta1/genetics , Mechanoreceptors/physiology , Mice , Mice, Knockout , Stress, Physiological/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...