Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 240: 112096, 2023 03.
Article in English | MEDLINE | ID: mdl-36603242

ABSTRACT

The rational design and functionalization of small, simple, and stable peptides scaffolds is an attractive avenue to mimic catalytic metal-centres of complex proteins, relevant for the design of metalloenzymes with environmental, biotechnological and health impacts. The de novo designed α3DIV-L21C framework has a rubredoxin-like metal binding site and was used in this work to incorporate a Mo-atom. Thermostability studies using differential scanning calorimetry showed an increase of 4 °C in the melting temperature of the Mo-α3DIV-L21C when compared to the apo-α3DIV-L21C. Circular dichroism in the visible and far-UV regions corroborated these results showing that Mo incorporation provides stability to the peptide even though there were almost no differences observed in the secondary structure. A formal reduction potential of ∼ -408 mV vs. NHE, pH 7.6 was determined. Combining electrochemical results, EPR and UV-visible data we discuss the oxidation state of the molybdenum centre in Mo-α3DIV-L21C and propose that is mainly in a Mo (VI) oxidation state.


Subject(s)
Metalloproteins , Molybdenum , Molybdenum/chemistry , Rubredoxins/metabolism , Metalloproteins/chemistry , Oxidation-Reduction , Peptides/metabolism
2.
Chem Rev ; 122(14): 12046-12109, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35763791

ABSTRACT

One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.


Subject(s)
Metalloproteins , Binding Sites , Catalysis , Catalytic Domain , Electrons , Metalloproteins/metabolism , Models, Molecular
3.
Inorg Chem ; 61(12): 5084-5091, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35286080

ABSTRACT

Long interspersed nuclear elements-1 (L1) are autonomous retrotransposons that encode two proteins in different open reading frames (ORF1 and ORF2). The ORF1p, which may be an RNA binding and chaperone protein, contains a three-stranded coiled coil (3SCC) domain that facilitates the formation of the biologically active homotrimer. This 3SCC domain is composed of seven amino acid (heptad) repeats as found in native and designed peptides and a stammer that modifies the helical structure. Cysteine residues occur at three hydrophobic positions (2 a and 1 d sites) within this domain. We recently showed that the cysteine layers in ORF1p and model de novo designed peptides bind the toxic metalloid lead(II) with high affinities, a feature that had not been previously recognized. However, there is little understanding of how essential metal ions might interact with this metal binding domain. We have, therefore, investigated the copper(I) binding properties of analogous de novo designed 3SCCs that contain cysteine layers within the hydrophobic core. The results from UV-visible and X-ray absorption spectroscopy show that these designed peptides bind Cu(I) with high affinity in a pH-dependent manner. At pH 9, monomeric trigonal planar Cu(I)S3 centers are formed with 1 equiv of metal, while dinuclear centers form with a second equivalent of metal. At physiologic pH conditions, the dinuclear center forms cooperatively. These data suggest that ORF1p is capable of binding two copper ions to its tris(cysteine) layers. This has major implications for ORF1p coiled coil domain stability and dynamics, ultimately potentially impacting the resulting biological activity.


Subject(s)
Copper , Retroelements , Binding Sites , Humans , Long Interspersed Nucleotide Elements , Open Reading Frames , Protein Binding
4.
J Am Chem Soc ; 143(37): 15271-15278, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34494819

ABSTRACT

The human long interspersed nuclear element 1 (LINE1) has been implicated in numerous diseases and has been suggested to play a significant role in genetic evolution. Open reading frame 1 protein (ORF1p) is one of the two proteins encoded in this self-replicating mobile genetic element, both of which are essential for retrotransposition. The structure of the three-stranded coiled-coil domain of ORF1p was recently solved and showed the presence of tris-cysteine layers in the interior of the coiled-coil that could function as metal binding sites. Here, we demonstrate that ORF1p binds Pb(II). We designed a model peptide, GRCSL16CL23C, to mimic two of the ORF1p Cys3 layers and crystallized the peptide both as the apo-form and in the presence of Pb(II). Structural comparison of the ORF1p with apo-(GRCSL16CL23C)3 shows very similar Cys3 layers, preorganized for Pb(II) binding. We propose that exposure to heavy metals, such as lead, could influence directly the structural parameters of ORF1p and thus impact the overall LINE1 retrotransposition frequency, directly relating heavy metal exposure to genetic modification.


Subject(s)
Deoxyribonuclease I/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Lead/pharmacology , Crystallography, X-Ray , Deoxyribonuclease I/genetics , Escherichia coli/metabolism , Humans , Lead/chemistry , Models, Molecular , Open Reading Frames , Protein Binding , Protein Conformation
5.
ChemMedChem ; 16(4): 654-661, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33211374

ABSTRACT

Bacterial expression of ß-lactamases, which hydrolyze ß-lactam antibiotics, contributes to the growing threat of antibacterial drug resistance. Metallo-ß-lactamases, such as NDM-1, use catalytic zinc ions in their active sites and hydrolyze nearly all clinically available ß-lactam antibiotics. Inhibitors of metallo-ß-lactamases are urgently needed to overcome this resistance mechanism. Zinc-binding compounds are promising leads for inhibitor development, as many NDM-1 inhibitors contain zinc-binding pharmacophores. Here, we evaluated 13 chelating agents containing benzimidazole and benzoxazole scaffolds as NDM-1 inhibitors. Six of the compounds showed potent inhibitory activity with IC50 values as low as 0.38 µM, and several compounds restored the meropenem susceptibility of NDM-1-expressing E. coli. Spectroscopic and docking studies suggest ternary complex formation as the mechanism of inhibition, making these compounds promising for development as NDM-1 inhibitors.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chelating Agents/pharmacology , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , beta-Lactamases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Zinc/chemistry , Zinc/pharmacology
6.
J Am Chem Soc ; 142(36): 15282-15294, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32786767

ABSTRACT

Blue copper proteins have a constrained Cu(II) geometry that has proven difficult to recapitulate outside native cupredoxin folds. Previous work has successfully designed green copper proteins which could be tuned blue using exogenous ligands, but the question of how one can create a self-contained blue copper site within a de novo scaffold, especially one removed from a cupredoxin fold, remained. We have recently reported a red copper protein site within a three helical bundle scaffold which we later revisited and determined to be a nitrosocyanin mimic, with a CuHis2CysGlu binding site. We now report efforts to rationally design this construct toward either green or blue copper chromophores using mutation strategies that have proven successful in native cupredoxins. By rotating the metal binding site, we created a de novo green copper protein. This in turn was converted to a blue copper protein by removing an axial methionine. Following this rational sequence, we have successfully created red, green, and blue copper proteins within an alpha helical fold, enabling comparisons for the first time of their structure and function disconnected from the overall cupredoxin fold.


Subject(s)
Azurin/chemical synthesis , Copper/chemistry , Azurin/chemistry , Binding Sites , Electrochemical Techniques , Models, Molecular , X-Ray Absorption Spectroscopy
7.
Angew Chem Int Ed Engl ; 59(46): 20445-20449, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32748510

ABSTRACT

While many life-critical reactions would be infeasibly slow without metal cofactors, a detailed understanding of how protein structure can influence catalytic activity remains elusive. Using de novo designed three-stranded coiled coils (TRI and Grand peptides formed using a heptad repeat approach), we examine how the insertion of a three residue discontinuity, known as a stammer insert, directly adjacent to a (His)3 metal binding site alters catalytic activity. The stammer, which locally alters the twist of the helix, significantly increases copper-catalyzed nitrite reductase activity (CuNiR). In contrast, the well-established zinc-catalyzed carbonic anhydrase activity (p-nitrophenyl acetate, pNPA) is effectively ablated. This study illustrates how the perturbation of the protein sequence using non-coordinating and non-acid base residues in the helical core can perturb metalloenzyme activity through the simple expedient of modifying the helical pitch adjacent to the catalytic center.


Subject(s)
Metals/metabolism , Peptides/chemistry , Amino Acid Sequence , Catalysis , Kinetics
8.
Angew Chem Int Ed Engl ; 59(20): 7678-7699, 2020 05 11.
Article in English | MEDLINE | ID: mdl-31441170

ABSTRACT

The relationship between protein structure and function is one of the greatest puzzles within biochemistry. De novo metalloprotein design is a way to wipe the board clean and determine what is required to build in function from the ground up in an unrelated structure. This Review focuses on protein design efforts to create de novo metalloproteins within alpha-helical scaffolds. Examples of successful designs include those with carbonic anhydrase or nitrite reductase activity by incorporating a ZnHis3 or CuHis3 site, or that recapitulate the spectroscopic properties of unique electron-transfer sites in cupredoxins (CuHis2 Cys) or rubredoxins (FeCys4 ). This work showcases the versatility of alpha helices as scaffolds for metalloprotein design and the progress that is possible through careful rational design. Our studies cover the invariance of carbonic anhydrase activity with different site positions and scaffolds, refinement of our cupredoxin models, and enhancement of nitrite reductase activity up to 1000-fold.


Subject(s)
Drug Design , Metalloproteins/chemistry , Electron Transport , Protein Conformation, alpha-Helical
9.
J Biol Chem ; 294(30): 11622-11636, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31197035

ABSTRACT

Staphylococcus aureus infection relies on iron acquisition from its host. S. aureus takes up iron through heme uptake by the iron-responsive surface determinant (Isd) system and by the production of iron-scavenging siderophores. Staphyloferrin B (SB) is a siderophore produced by the 9-gene sbn gene cluster for SB biosynthesis and efflux. Recently, the ninth gene product, SbnI, was determined to be a free l-serine kinase that produces O-phospho-l-serine (OPS), a substrate for SB biosynthesis. Previous studies have also characterized SbnI as a DNA-binding regulatory protein that senses heme to control sbn gene expression for SB synthesis. Here, we present crystal structures at 1.9-2.1 Å resolution of a SbnI homolog from Staphylococcus pseudintermedius (SpSbnI) in both apo form and in complex with ADP, a product of the kinase reaction; the latter confirmed the active-site location. The structures revealed that SpSbnI forms a dimer through C-terminal domain swapping and a dimer of dimers through intermolecular disulfide formation. Heme binding had only a modest effect on SbnI enzymatic activity, suggesting that its two functions are independent and structurally distinct. We identified a heme-binding site and observed catalytic heme transfer between a heme-degrading protein of the Isd system, IsdI, and SbnI. These findings support the notion that SbnI has a bifunctional role contributing precursor OPS to SB synthesis and directly sensing heme to control expression of the sbn locus. We propose that heme transfer from IsdI to SbnI enables S. aureus to control iron source preference according to the sources available in the environment.


Subject(s)
Bacterial Proteins/physiology , Citrates/biosynthesis , Heme/metabolism , Staphylococcus aureus/metabolism , Adenosine Diphosphate/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Catalysis , Citrates/metabolism , Genes, Bacterial , Protein Binding , Protein Conformation , Staphylococcus aureus/genetics
10.
J Am Chem Soc ; 141(19): 7765-7775, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30983335

ABSTRACT

Copper proteins have the capacity to serve as both redox active catalysts and purely electron transfer centers. A longstanding question in this field is how the function of histidine ligated Cu centers are modulated by δ vs ε-nitrogen ligation of the imidazole. Evaluating the impact of these coordination modes on structure and function by comparative analysis of deposited crystal structures is confounded by factors such as differing protein folds and disparate secondary coordination spheres that make direct comparison of these isomers difficult. Here, we present a series of de novo designed proteins using the noncanonical amino acids 1-methyl-histidine and 3-methyl-histidine to create Cu nitrite reductases where δ- or ε-nitrogen ligation is enforced by the opposite nitrogen's methylation as a means of directly comparing these two ligation states in the same protein fold. We find that ε-nitrogen ligation allows for a better nitrite reduction catalyst, displaying 2 orders of magnitude higher activity than the δ-nitrogen ligated construct. Methylation of the δ nitrogen, combined with a secondary sphere mutation we have previously published, has produced a new record for efficiency within a homogeneous aqueous system, improving by 1 order of magnitude the previously published most efficient construct. Furthermore, we have measured Michaelis-Menten kinetics on these highly active constructs, revealing that the remaining barriers to matching the catalytic efficiency ( kcat/ KM) of native Cu nitrite reductase involve both substrate binding ( KM) and catalysis ( kcat).


Subject(s)
Biocatalysis , Copper/metabolism , Histidine/metabolism , Nitrite Reductases/metabolism , Oligopeptides/metabolism , Isomerism , Methylation , Models, Molecular , Nitrite Reductases/chemistry , Oligopeptides/chemistry , Protein Binding , Protein Structure, Secondary , Substrate Specificity
11.
Biochemistry ; 57(16): 2308-2316, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29561598

ABSTRACT

Protein design is a powerful tool for interrogating the basic requirements for the function of a metal site in a way that allows for the selective incorporation of elements that are important for function. Rubredoxins are small electron transfer proteins with a reduction potential centered near 0 mV (vs normal hydrogen electrode). All previous attempts to design a rubredoxin site have focused on incorporating the canonical CXXC motifs in addition to reproducing the peptide fold or using flexible loop regions to define the morphology of the site. We have produced a rubredoxin site in an utterly different fold, a three-helix bundle. The spectra of this construct mimic the ultraviolet-visible, Mössbauer, electron paramagnetic resonance, and magnetic circular dichroism spectra of native rubredoxin. Furthermore, the measured reduction potential suggests that this rubredoxin analogue could function similarly. Thus, we have shown that an α-helical scaffold sustains a rubredoxin site that can cycle with the desired potential between the Fe(II) and Fe(III) states and reproduces the spectroscopic characteristics of this electron transport protein without requiring the classic rubredoxin protein fold.


Subject(s)
Electron Transport/genetics , Protein Conformation, alpha-Helical , Rubredoxins/chemistry , Circular Dichroism , Electron Spin Resonance Spectroscopy , Ferric Compounds/chemistry , Iron/chemistry , Models, Molecular , Oxidation-Reduction , Rubredoxins/genetics
12.
Metallomics ; 8(1): 71-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26583802

ABSTRACT

Metallothioneins (MTs) are cysteine-rich, metal-binding proteins that are found throughout Nature. This ubiquity highlights their importance in essential metal regulation, heavy metal detoxification and cellular redox chemistry. Missing from the current description of MT function is the underlying mechanism by which MTs achieve their proposed biological functions. To date, there have been conflicting reports on the mechanism of metal binding and the structures of the metal binding intermediates formed during metalation of apoMTs. The form of the metal-bound intermediates dictates the metal sequestering and metal-donating properties of the protein. Through a detailed analysis of spectral data from electrospray ionization mass spectromeric and circular dichroism methods we report that Zn(ii) and Cd(ii) metalation of the human MT1a takes place through two distinct pathways. The first pathway involves formation of beaded structures with up to five metals bound terminally to the 20 cysteines of the protein via a noncooperative mechanism. The second pathway is dominated by the formation of the four-metal domain cluster structure M4SCYS11via a cooperative mechanism. We report that there are different pathway preferences for Zn(ii) and Cd(ii) metalation of apo-hMT1a. Cd(ii) binding follows the beaded pathway above pH 7.1 but beginning below pH 7.1 the clustered (Cd4Scys11) pathway begins to dominate. In contrast, Zn(ii) binding follows the terminal, "beaded", pathway at all physiologically relevant pH (pH ≥ 5.2) only following the clustered pathway below pH 5.1. The results presented here allow us to reconcile the conflicting reports concerning the presence of different metalation intermediates of MTs. The conflict regarding cooperative versus noncooperative binding mechanisms is also reconciled with the experimental results described here. These two metal-specific pathways and the presence of radically different intermediate structures provide insight into the multi-functional nature of MT: binding Zn(ii) terminally for donation to metalloenzymes and sequestering toxic Cd(ii) in a cluster structure.


Subject(s)
Cadmium/metabolism , Metallothionein/metabolism , Zinc/metabolism , Apoproteins/metabolism , Circular Dichroism , Computer Simulation , Humans , Hydrogen-Ion Concentration , Metallothionein/chemistry , Protein Structure, Secondary , Spectrometry, Mass, Electrospray Ionization
13.
J Biol Chem ; 291(1): 29-40, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26534960

ABSTRACT

Staphylococcus aureus possesses a multitude of mechanisms by which it can obtain iron during growth under iron starvation conditions. It expresses an effective heme acquisition system (the iron-regulated surface determinant system), it produces two carboxylate-type siderophores staphyloferrin A and staphyloferrin B (SB), and it expresses transporters for many other siderophores that it does not synthesize. The ferric uptake regulator protein regulates expression of genes encoding all of these systems. Mechanisms of fine-tuning expression of iron-regulated genes, beyond simple iron regulation via ferric uptake regulator, have not been uncovered in this organism. Here, we identify the ninth gene of the sbn operon, sbnI, as encoding a ParB/Spo0J-like protein that is required for expression of genes in the sbn operon from sbnD onward. Expression of sbnD-I is drastically decreased in an sbnI mutant, and the mutant does not synthesize detectable SB during early phases of growth. Thus, SB-mediated iron acquisition is impaired in an sbnI mutant strain. We show that the protein forms dimers and tetramers in solution and binds to DNA within the sbnC coding region. Moreover, we show that SbnI binds heme and that heme-bound SbnI does not bind DNA. Finally, we show that providing exogenous heme to S. aureus growing in an iron-free medium results in delayed synthesis of SB. This is the first study in S. aureus that identifies a DNA-binding regulatory protein that senses heme to control gene expression for siderophore synthesis.


Subject(s)
Bacterial Proteins/metabolism , Citrates/biosynthesis , Heme/pharmacology , Staphylococcus aureus/metabolism , Base Sequence , Binding Sites , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genetic Loci , Heme/metabolism , Iron/pharmacology , Models, Biological , Molecular Sequence Data , Mutation/genetics , Open Reading Frames/genetics , Operon/genetics , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Multimerization/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development
14.
Biochem J ; 471(3): 347-56, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26475450

ABSTRACT

Mammalian metallothioneins (MTs) bind up to seven Zn(2+) using a large number of cysteine residues relative to their small size and can act as zinc-chaperones. In metal-saturated Zn7-MTs, the seven zinc ions are co-ordinated tetrahedrally into two distinct clusters separated by a linker; the N-terminal ß-domain [(Zn3Cys9)(3-)] and C-terminal α-domain [(Zn4Cys11)(3-)]. We report on the competitive zinc metalation of apo-carbonic anhydrase [CA; metal-free CA (apo-CA)] in the presence of apo-metallothionein 1A domain fragments to identify domain specific determinants of zinc binding and zinc donation in the intact two-domain Znn-ßαMT1A (human metallothionein 1A isoform; n=0-7). The apo-CA is shown to compete effectively only with Zn2-3-ßMT and Zn4-αMT. Detailed modelling of the ESI mass spectral data have revealed the zinc-binding affinities of each of the zinc-binding sites in the two isolated fragments. The three calculated equilibrium zinc affinities [log(KF)] of the isolated ß-domain were: 12.2, 11.7 and 11.4 and the four isolated α-domain affinities were: 13.5, 13.2, 12.7 and 12.6. These data provide guidance in identification of the location of the strongest-bound and weakest-bound zinc in the intact two-domain Zn7ßαMT. The ß-domain has the weakest zinc-binding site and this is where zinc ions are donated from in the Zn7-ßαMT. The α-domain with the highest affinity binds the first zinc, which we propose leads to an unscrambling of the cysteine ligands from the apo-peptide bundle. We propose that stabilization of the intact Zn6-MT and Zn7-MT, relative to that of the sum of the separated fragments, is due to the availability of additional cysteine ligand orientations (through interdomain interactions) to support the clustered structures.


Subject(s)
Carbonic Anhydrases/chemistry , Metallothionein/chemistry , Protein Structure, Tertiary , Zinc/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cadmium/chemistry , Carbonic Anhydrases/metabolism , Cysteine/chemistry , Humans , Kinetics , Metallothionein/metabolism , Protein Binding , Zinc/metabolism
15.
Biochemistry ; 54(40): 6284-93, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26401817

ABSTRACT

The flexible coordination stoichiometry of a relatively high number of metal ions is a property unique to the metallothionein (MT) family of proteins. Mammalian MTs, for example, accommodate up to seven divalent metal ions in tetrahedral coordination geometries, using its complement of 20 cysteine ligands. The lability of the metals from these metalloclusters has been used to support the proposal of MTs acting as metal chaperones, by donating to other metal-binding proteins. The metal exchange kinetics between human MT1A and carbonic anhydrase (CA) were examined using time-dependent electrospray ionization mass spectrometry (ESI-MS). The time dependence of three different reaction conditions were studied: (i) zinc donation from partially metalated zinc-MT to apoCA; (ii) metal exchange between zinc saturated MTs and cadmium saturated CA (Cd-CA); and (iii) metal exchange between partially metalated zinc-MTs and Cd-CA. The results show that zinc donation from Zn-MTs to apo-zinc-dependent enzymes is dependent on the metal loading of the Znn-MT (where n = 1-7) and that this is a direct consequence of the increasing metal affinity for smaller values of n. Partially metalated MTs are also shown to extract cadmium from Cd-CA with significantly faster rates than metal saturated MTs and that even under zinc limiting conditions, mammalian Cd-CA would not coexist with MT. On the basis of these and previously published results, we suggest that protein-protein interactions between MT and CA facilitate metal transfers through favorable electrostatic interactions and hypothesize that the metal could be transferred between the MT and the enzyme active site using nearby metal-binding functionalities along the transfer pathway.


Subject(s)
Cadmium/metabolism , Carbonic Anhydrases/metabolism , Metallothionein/metabolism , Zinc/metabolism , Animals , Binding Sites , Carbonic Anhydrases/chemistry , Cattle , Humans , Kinetics , Metallothionein/chemistry , Models, Molecular , Spectrometry, Mass, Electrospray Ionization
16.
Biochemistry ; 54(32): 5006-16, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26167879

ABSTRACT

Mammalian metallothioneins (MTs) are small, metal binding proteins implicated in cellular metal ion homeostasis and heavy metal detoxification. Divalent, metal-saturated MTs form two distinct domains; the N-terminal ß domain binds three metals using nine Cys residues, and the C-terminal α domain binds four metals with 11 Cys residues. Domain selection during zinc binding and cadmium exchange to human MT1A was examined using a series of competition reactions with mixtures of the isolated domain fragments. These experiments were conducted at two biologically significant pH conditions where MTs exist in vivo. Neither zinc binding nor cadmium exchange showed any significant degree of specificity or selectivity based on detailed analysis of electrospray ionization mass spectrometric and circular dichroic data. Under acidic conditions, zinc binding and cadmium exchange showed slight α domain selectivity because of the increased preference for cooperative clustering of the α domain. Modeling of the reactions showed that at both physiological (7.4) and acidic (5.8) pHs, zinc binding and cadmium exchanges occur essentially randomly between the two fragments. The metal binding affinity distributions between the domain fragments are comingled and not significantly separated as required for a domain specific mechanism. The models show rather that the order of the binding events follows the order of the binding affinities that are distributed across both domains and that this can be considered quantitatively by the KF(Cd)/KF(Zn) binding constant ratio for each metal bound.


Subject(s)
Metallothionein/chemistry , Metallothionein/metabolism , Amino Acid Sequence , Binding Sites , Binding, Competitive , Cadmium/metabolism , Circular Dichroism , Humans , Hydrogen-Ion Concentration , Kinetics , Metallothionein/genetics , Models, Molecular , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , Zinc/metabolism
17.
Biochemistry ; 53(39): 6276-85, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25208334

ABSTRACT

The small, cysteine-rich metallothionein family of proteins is currently considered to play a critical role in the provision of metals to metalloenzymes. However, there is limited information available on the mechanisms of these fundamentally important interactions. We report on the competitive zinc metalation of apocarbonic anhydrase in the presence of apometallothionein 1A using electrospray-ionization mass spectrometry. These experiments revealed the relative affinities of zinc to all species in solution. The carbonic anhydrase is shown to compete efficiently only against Zn5-7MT. The calculated equilibrium zinc binding constants of each of the 7 zinc metallothionein 1A species ranged from a high of (log(KF)) 12.5 to a low of 11.8. The 8 equilibrium constants connecting the 10 active species in competition for the zinc were modeled by fitting the KF values of the 8 competitive bimolecular reactions to the ESI-mass spectral data. These modeled K values are shown to be experimentally connected to the metalation efficiency of the carbonic anhydrase. The series of 7 metallothionein binding affinities for zinc highlight the buffering role of zinc metallothioneins that permit simultaneously zinc storage and zinc sensing. Finally, the significance of the multiple zinc binding affinities of zinc metallothionein is discussed in relation to zinc homeostasis.


Subject(s)
Apoproteins/metabolism , Carbonic Anhydrases/metabolism , Metallothionein/metabolism , Zinc/metabolism , Animals , Apoenzymes/chemistry , Apoenzymes/metabolism , Apoproteins/chemistry , Binding, Competitive , Carbonic Anhydrases/chemistry , Cattle , Humans , Hydrogen-Ion Concentration , Kinetics , Metallothionein/chemistry , Metallothionein/genetics , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , Zinc/chemistry
18.
Inorg Chem ; 51(20): 10747-61, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23030718

ABSTRACT

The facile axial ligand exchange properties of gallium(III) protoporphyrin IX in methanol solution were utilized to explore self-association interactions by NMR techniques. Structural changes were observed, as well as competitive behavior with the ligands acetate and fluoride, which differed from that seen with the synthetic analogue gallium(III) octaethylporphyrin which lacks acid groups in its side-chains and has less solution heterogeneity as indicated by absorption and MCD spectroscopies. The propionic acid side chains of protoporphyrin IX are implicated in all such interactions of PPIX, and both dynamic metal-propionic interactions and the formation of propionate-bridged dimers are observed. Fluoride coordination provides an unusual example of slow ligand exchange, and this allows for the identification of a fluoride bridged dimer in solution. An improved synthesis of the chloride and hydroxide complexes of gallium(III) protoporphyrin IX is reported. An insoluble gallium analogue of hematin anhydride is described. In general, the interactions between solvent and the metal are found to confer very high solubility, making [Ga(PPIX)](+) a useful model for ferric heme species.


Subject(s)
Biomimetic Materials/chemistry , Gallium/chemistry , Hemeproteins/chemistry , Magnetic Phenomena , Protoporphyrins/chemistry , Catalysis , Dimerization , Models, Molecular , Molecular Conformation , Solubility , Solvents/chemistry
19.
Metallomics ; 4(8): 751-60, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22786442

ABSTRACT

The pathogenic bacterium Staphylococcus aureus has adopted specialized mechanisms for scavenging iron from its host. The nine cell wall and membrane-associated iron regulated surface determinant (Isd) proteins (IsdH, IsdB, IsdA, IsdC, IsdDEF, IsdG and IsdI) allow Staphylococcus aureus to scavenge iron from the heme in hemoglobin and haptoglobin-hemoglobin. Of these, it is IsdE that chaperones the heme to the ATP binding cassette-type transmembrane transporter (IsdF). IsdH, IsdB, IsdA and IsdC contain at least one heme binding Near Transporter (NEAT) domain. Previous studies have shown that ferric heme is transferred unidirectionally in the sequence IsdA-NEAT (Tyr - proximal amino acid) → IsdC-NEAT (Tyr) → IsdE (His). IsdA-NEAT does not transfer heme directly to IsdE. In this paper we investigated PPIX transfer through the core cell wall proteins of the Isd system (IsdA-NEAT, IsdC-NEAT and IsdE) with FePPIX-dimethylester, and the metal substituted CoPPIX and MnPPIX using ESI-MS, UV-visible absorption and MCD spectroscopy. IsdA binds each of the rings but the subsequent transfer properties to IsdC-N or IsdE are not the same as found with heme. FePPIX-DME transfers from IsdA-N to IsdC-N but neither protein transfers the ring to IsdE. IsdA-N does not transfer CoPPIX to IsdC-N or IsdE. IsdA-N does transfer MnPPIX to both IsdC-N and IsdE. Significantly, it is possible that since CoPPIX and FePPIX-DME bind to IsdA-N, the lack of transfer to IsdC-N and subsequently to IsdE for CoPPIX could prove to be used as a potential disruption agent to the S. aureus heme transfer system and may identify a possible anti-microbial.


Subject(s)
Antigens, Bacterial/metabolism , Carrier Proteins/metabolism , Heme/metabolism , Host-Pathogen Interactions , Iron/metabolism , Staphylococcus aureus/physiology , Antigens, Bacterial/chemistry , Carrier Proteins/chemistry , Humans , Models, Molecular , Protein Structure, Tertiary , Spectrometry, Mass, Electrospray Ionization , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/metabolism
20.
Inorg Chem ; 51(6): 3743-53, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22372462

ABSTRACT

Ga(III)protoporphyrin-IX (Ga-PP) has been proposed as a model for the key interporphyrin interactions in malaria pigment. Unlike the paramagnetic parent iron heme derivatives, Ga-PP is readily soluble in methanol (MeOH). We report optical, mass spectroscopic, and theoretical results for Ga-PP as well as its reactions with myoglobin. UV-visible absorption and MCD spectroscopy show that Ga-PP exhibits a typical spectrum for a main group metal: a Q-band at 539 nm and a B band at 406 nm when dissolved in MeOH. We also report optical data for Zn(II)protoporphyrin IX (Zn-PP) dissolved in MeOH, which exhibits a Q-band at 545 nm and a B band at 415 nm. ESI mass spectral data for Ga-PP dissolved in MeOH show the presence of predominantly monomers, with smaller fractions of dimers [(Ga-PP)(2)] and trimers. UV-visible and MCD absorption spectroscopy and ESI mass spectral data demonstrate the successful insertion of monomeric Ga-PP into apo-Mb. Ga-PP-Mb exhibits a B band at 417 nm and Q bands at 545 and 584 nm, which are all red-shifted from the free Ga-PP values. The calculated electronic structures and frontier molecular orbitals of Ga-PP, (Ga-PP)(2) and Zn-PP fit the previously reported trends in band energies and oscillator strengths as a function of molecular orbital energies. These new data can be applied to explain the experimentally observed optical spectroscopy. The observed Q-band energies are accounted for by calculated (HOMO-LUMO) gap of the frontier MOs, while the split in the two top occupied MOs accounts for the magnitude of the Q-band oscillator strength as well as the experimentally observed Q to B band energy separation. Although Ga-PP shares more spectroscopic properties with Zn-PP than it does with Fe(III)PPIX, the trivalent oxidation state allows this molecule to be used as a model for ferric hemes in heme proteins.


Subject(s)
Gallium/chemistry , Myoglobin/chemistry , Protoporphyrins/chemistry , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...