Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxf Open Neurosci ; 3: kvae006, 2024.
Article in English | MEDLINE | ID: mdl-38707237

ABSTRACT

How does co-presence change our neural experience of the world? Can a conversation change how we synchronise with our partner during later events? Using fNIRS hyperscanning, we measured brain activity from 27 pairs of familiar adults simultaneously over frontal, temporal and parietal regions bilaterally, as they co-watched two different episodes of a short cartoon. In-between the two episodes, each pair engaged in a face-to-face conversation on topics unrelated to the cartoon episodes. Brain synchrony was calculated using wavelet transform coherence and computed separately for real pairs and shuffled pseudo) pairs. Findings reveal that real pairs showed increased brain synchrony over right Dorso-Lateral Pre-Frontal cortex (DLPFC) and right Superior Parietal Lobe (SPL), compared to pseudo pairs (who had never seen each other and watched the same movie at different times; uncorrected for multiple comparisons). In addition, co-watching after a conversation was associated with greater synchrony over right TPJ compared to co-watching before a conversation, and this effect was significantly higher in real pairs (who engaged in conversation with each other) compared to pseudo pairs (who had a conversation with someone else; uncorrected for multiple comparisons). The present study has shed the light on the role of social interaction in modulating brain synchrony across people not just during social interaction, but even for subsequent non-social activities. These results have implications in the growing domain of naturalistic neuroimaging and interactive neuroscience.

2.
Neuroimage ; 280: 120354, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37666393

ABSTRACT

Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.


Subject(s)
Brain , Thalamus , Humans , Reproducibility of Results , Brain/diagnostic imaging , Neuroimaging , Hemodynamics
3.
Sci Rep ; 11(1): 3977, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597576

ABSTRACT

With the rapid growth of optical-based neuroimaging to explore human brain functioning, our research group has been developing broadband Near Infrared Spectroscopy (bNIRS) instruments, a technological extension to functional Near Infrared Spectroscopy (fNIRS). bNIRS has the unique capacity of monitoring brain haemodynamics/oxygenation (measuring oxygenated and deoxygenated haemoglobin), and metabolism (measuring the changes in the redox state of cytochrome-c-oxidase). When combined with electroencephalography (EEG), bNIRS provides a unique neuromonitoring platform to explore neurovascular coupling mechanisms. In this paper, we present a novel pipeline for the integrated analysis of bNIRS and EEG signals, and demonstrate its use on multi-channel bNIRS data recorded with concurrent EEG on healthy adults during a visual stimulation task. We introduce the use of the Finite Impulse Response functions within the General Linear Model for bNIRS and show its feasibility to statistically localize the haemodynamic and metabolic activity in the occipital cortex. Moreover, our results suggest that the fusion of haemodynamic and metabolic measures unveils additional information on brain functioning over haemodynamic imaging alone. The cross-correlation-based analysis of interrelationships between electrical (EEG) and haemodynamic/metabolic (bNIRS) activity revealed that the bNIRS metabolic signal offers a unique marker of brain activity, being more closely coupled to the neuronal EEG response.


Subject(s)
Neurovascular Coupling/physiology , Brain , Brain Mapping , Electron Transport Complex IV/metabolism , Hemodynamics , Humans , Models, Statistical , Neuroimaging , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...