Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38410446

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.

2.
Front Immunol ; 14: 1188392, 2023.
Article in English | MEDLINE | ID: mdl-37662899

ABSTRACT

Introduction: Vaccination is the most effective mechanism to prevent severe COVID-19. However, breakthrough infections and subsequent transmission of SARS-CoV-2 remain a significant problem. Intranasal vaccination has the potential to be more effective in preventing disease and limiting transmission between individuals as it induces potent responses at mucosal sites. Methods: Utilizing a replication-deficient adenovirus serotype 5-vectored vaccine expressing the SARS-CoV-2 RBD (AdCOVID) in homozygous and heterozygous transgenic K18-hACE2, we investigated the impact of the route of administration on vaccine immunogenicity, SARS-CoV-2 transmission, and survival. Results: Mice vaccinated with AdCOVID via the intramuscular or intranasal route and subsequently challenged with SARS-CoV-2 showed that animals vaccinated intranasally had improved cellular and mucosal antibody responses. Additionally, intranasally vaccinated animals had significantly better viremic control, and protection from lethal infection compared to intramuscularly vaccinated animals. Notably, in a novel transmission model, intranasal vaccination reduced viral transmission to naïve co-housed mice compared to intramuscular vaccination. Discussion: Our data provide convincing evidence for the use of intranasal vaccination in protecting against SARS-CoV-2 infection and transmission.


Subject(s)
Adenoviridae Infections , Adenovirus Vaccines , COVID-19 , Vaccines , Animals , Mice , Adenoviridae/genetics , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Animals, Genetically Modified
3.
Front Immunol ; 14: 1247876, 2023.
Article in English | MEDLINE | ID: mdl-37705976

ABSTRACT

Zika virus (ZIKV) is a flavivirus primarily transmitted by Aedes species mosquitoes, first discovered in Africa in 1947, that disseminated through Southeast Asia and the Pacific Islands in the 2000s. The first ZIKV infections in the Americas were identified in 2014, and infections exploded through populations in Brazil and other countries in 2015/16. ZIKV infection during pregnancy can cause severe brain and eye defects in offspring, and infection in adults has been associated with higher risks of Guillain-Barré syndrome. We initiated a study to describe the natural history of Zika (the disease) and the immune response to infection, for which some results have been reported. In this paper, we identify ZIKV-specific CD4+ and CD8+ T cell epitopes that induce responses during infection. Two screening approaches were utilized: an untargeted approach with overlapping peptide arrays spanning the entire viral genome, and a targeted approach utilizing peptides predicted to bind human MHC molecules. Immunoinformatic tools were used to identify conserved MHC class I supertype binders and promiscuous class II binding peptide clusters predicted to bind 9 common class II alleles. T cell responses were evaluated in overnight IFN-γ ELISPOT assays. We found that MHC supertype binding predictions outperformed the bulk overlapping peptide approach. Diverse CD4+ T cell responses were observed in most ZIKV-infected participants, while responses to CD8+ T cell epitopes were more limited. Most individuals developed a robust T cell response against epitopes restricted to a single MHC class I supertype and only a single or few CD8+ T cell epitopes overall, suggesting a strong immunodominance phenomenon. Noteworthy is that many epitopes were commonly immunodominant across persons expressing the same class I supertype. Nearly all of the identified epitopes are unique to ZIKV and are not present in Dengue viruses. Collectively, we identified 31 immunogenic peptides restricted by the 6 major class I supertypes and 27 promiscuous class II epitopes. These sequences are highly relevant for design of T cell-targeted ZIKV vaccines and monitoring T cell responses to Zika virus infection and vaccination.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Adult , Animals , Female , Pregnancy , Humans , Epitopes, T-Lymphocyte , Genes, MHC Class I
4.
Viruses ; 15(4)2023 04 13.
Article in English | MEDLINE | ID: mdl-37112938

ABSTRACT

The family Flaviviridae is comprised of a diverse group of arthropod-borne viruses that are the etiological agents of globally relevant diseases in humans. Among these, infection with several of these flaviviruses-including West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Powassan virus (POWV)-can result in neuroinvasive disease presenting as meningitis or encephalitis. Factors contributing to the development and resolution of tick-borne flavivirus (TBEV, POWV) infection and neuropathology remain unclear, though many recently undertaken studies have described the virus-host interactions underlying encephalitic disease. With access to neural tissues despite the selectively permeable blood-brain barrier, T cells have emerged as one notable contributor to neuroinflammation. The goal of this review is to summarize the recent advances in tick-borne flavivirus immunology-particularly with respect to T cells-as it pertains to the development of encephalitis. We found that although T cell responses are rarely evaluated in a clinical setting, they are integral in conjunction with antibody responses to restricting the entry of TBFV into the CNS. The extent and means by which they can drive immune pathology, however, merits further study. Understanding the role of the T cell compartment in tick-borne flavivirus encephalitis is instrumental for improving vaccine safety and efficacy, and has implications for treatments and interventions for human disease.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Flavivirus Infections , Flavivirus , Ticks , Zika Virus Infection , Zika Virus , Humans , Animals , Encephalitis Viruses, Tick-Borne/physiology , T-Lymphocytes
5.
Front Immunol ; 13: 968582, 2022.
Article in English | MEDLINE | ID: mdl-36466818

ABSTRACT

Obesity is a global health problem that affects 650 million people worldwide and leads to diverse changes in host immunity. Individuals with obesity experience an increase in the size and the number of adipocytes, which function as an endocrine organ and release various adipocytokines such as leptin and adiponectin that exert wide ranging effects on other cells. In individuals with obesity, macrophages account for up to 40% of adipose tissue (AT) cells, three times more than in adipose tissue (10%) of healthy weight individuals and secrete several cytokines and chemokines such as interleukin (IL)-1ß, chemokine C-C ligand (CCL)-2, IL-6, CCL5, and tumor necrosis factor (TNF)-α, leading to the development of inflammation. Overall, obesity-derived cytokines strongly affect immune responses and make patients with obesity more prone to severe symptoms than patients with a healthy weight. Several epidemiological studies reported a strong association between obesity and severe arthropod-borne virus (arbovirus) infections such as dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), and Sindbis virus (SINV). Recently, experimental investigations found that DENV, WNV, CHIKV and Mayaro virus (MAYV) infections cause worsened disease outcomes in infected diet induced obese (DIO) mice groups compared to infected healthy-weight animals. The mechanisms leading to higher susceptibility to severe infections in individuals with obesity remain unknown, though a better understanding of the causes will help scientists and clinicians develop host directed therapies to treat severe disease. In this review article, we summarize the effects of obesity on the host immune response in the context of arboviral infections. We have outlined that obesity makes the host more susceptible to infectious agents, likely by disrupting the functions of innate and adaptive immune cells. We have also discussed the immune response of DIO mouse models against some important arboviruses such as CHIKV, MAYV, DENV, and WNV. We can speculate that obesity-induced disruption of innate and adaptive immune cell function in arboviral infections ultimately affects the course of arboviral disease. Therefore, further studies are needed to explore the cellular and molecular aspects of immunity that are compromised in obesity during arboviral infections or vaccination, which will be helpful in developing specific therapeutic/prophylactic interventions to prevent immunopathology and disease progression in individuals with obesity.


Subject(s)
Arbovirus Infections , Chikungunya virus , West Nile virus , Animals , Mice , Obesity , Mice, Obese , Immunity
6.
Front Immunol ; 13: 1015563, 2022.
Article in English | MEDLINE | ID: mdl-36532060

ABSTRACT

This review outlines the propensity for metabolic syndrome (MetS) to induce elevated disease severity, higher mortality rates post-infection, and poor vaccination outcomes for viral pathogens. MetS is a cluster of conditions including high blood glucose, an increase in circulating low-density lipoproteins and triglycerides, abdominal obesity, and elevated blood pressure which often overlap in their occurrence. MetS diagnoses are on the rise, as reported cases have increased by greater than 35% since 1988, resulting in one-third of United States adults currently diagnosed as MetS patients. In the aftermath of the 2009 H1N1 pandemic, a link between MetS and disease severity was established. Since then, numerous studies have been conducted to illuminate the impact of MetS on enhancing virally induced morbidity and dysregulation of the host immune response. These correlative studies have emphasized the need for elucidating the mechanisms by which these alterations occur, and animal studies conducted as early as the 1940s have linked the conditions associated with MetS with enhanced viral disease severity and poor vaccine outcomes. In this review, we provide an overview of the importance of considering overall metabolic health in terms of cholesterolemia, glycemia, triglyceridemia, insulin and other metabolic molecules, along with blood pressure levels and obesity when studying the impact of metabolism-related malignancies on immune function. We highlight the novel insights that small animal models have provided for MetS-associated immune dysfunction following viral infection. Such animal models of aberrant metabolism have paved the way for our current understanding of MetS and its impact on viral disease severity, dysregulated immune responses to viral pathogens, poor vaccination outcomes, and contributions to the emergence of viral variants.


Subject(s)
Influenza A Virus, H1N1 Subtype , Metabolic Syndrome , Virus Diseases , Animals , United States , Metabolic Syndrome/diagnosis , Obesity/complications , Models, Animal , Immunity , Virus Diseases/complications , Vaccination
7.
PLoS One ; 17(9): e0274266, 2022.
Article in English | MEDLINE | ID: mdl-36112605

ABSTRACT

Rift Valley fever virus (RVFV) is a veterinary and human pathogen and is an agent of bioterrorism concern. Currently, RVFV treatment is limited to supportive care, so new drugs to control RVFV infection are urgently needed. RVFV is a member of the order Bunyavirales, whose replication depends on the enzymatic activity of the viral L protein. Screening for RVFV inhibitors among compounds with divalent cation-coordinating motifs similar to known viral nuclease inhibitors identified 47 novel RVFV inhibitors with selective indexes from 1.1-103 and 50% effective concentrations of 1.2-56 µM in Vero cells, primarily α-Hydroxytropolones and N-Hydroxypyridinediones. Inhibitor activity and selective index was validated in the human cell line A549. To evaluate specificity, select compounds were tested against a second Bunyavirus, La Crosse Virus (LACV), and the flavivirus Zika (ZIKV). These data indicate that the α-Hydroxytropolone and N-Hydroxypyridinedione chemotypes should be investigated in the future to determine their mechanism(s) of action allowing further development as therapeutics for RVFV and LACV, and these chemotypes should be evaluated for activity against related pathogens, including Hantaan virus, severe fever with thrombocytopenia syndrome virus, Crimean-Congo hemorrhagic fever virus.


Subject(s)
La Crosse virus , Rift Valley fever virus , Zika Virus Infection , Zika Virus , Animals , Cations, Divalent , Chlorocebus aethiops , Humans , Vero Cells
8.
iScience ; 25(8): 104764, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35982798

ABSTRACT

The link between CD4+ T and B cells during immune responses to DENV and ZIKV and their roles in cross-protection during heterologous infection is an active area of research. Here we used CD4+ lymphocyte depletions to dissect the impact of cellular immunity on humoral responses during a tertiary flavivirus infection in macaques. We show that CD4+ depletion in DENV/ZIKV-primed animals followed by DENV resulted in dysregulated adaptive immune responses. We show a delay in DENV-specific IgM/IgG antibody titers and binding and neutralization in the DENV/ZIKV-primed CD4-depleted animals but not in ZIKV/DENV-primed CD4-depleted animals. This study confirms the critical role of CD4+ cells in priming an early effective humoral response during sequential flavivirus infections. Our work here suggests that the order of flavivirus exposure affects the outcome of a tertiary infection. Our findings have implications for understanding the complex flavivirus immune responses and for the development of effective flavivirus vaccines.

9.
Front Cell Dev Biol ; 10: 912880, 2022.
Article in English | MEDLINE | ID: mdl-35784479

ABSTRACT

Plasmalogens are plasma-borne antioxidant phospholipid species that provide protection as cellular lipid components during cellular oxidative stress. In this study we investigated plasma plasmalogen levels in human sepsis as well as in rodent models of infection. In humans, levels of multiple plasmenylethanolamine molecular species were decreased in septic patient plasma compared to control subject plasma as well as an age-aligned control subject cohort. Additionally, lysoplasmenylcholine levels were significantly decreased in septic patients compared to the control cohorts. In contrast, plasma diacyl phosphatidylethanolamine and phosphatidylcholine levels were elevated in septic patients. Lipid changes were also determined in rats subjected to cecal slurry sepsis. Plasma plasmenylcholine, plasmenylethanolamine, and lysoplasmenylcholine levels were decreased while diacyl phosphatidylethanolamine levels were increased in septic rats compared to control treated rats. Kidney levels of lysoplasmenylcholine as well as plasmenylethanolamine molecular species were decreased in septic rats. Interestingly, liver plasmenylcholine and plasmenylethanolamine levels were increased in septic rats. Since COVID-19 is associated with sepsis-like acute respiratory distress syndrome and oxidative stress, plasmalogen levels were also determined in a mouse model of COVID-19 (intranasal inoculation of K18 mice with SARS-CoV-2). 3 days following infection, lung infection was confirmed as well as cytokine expression in the lung. Multiple molecular species of lung plasmenylcholine and plasmenylethanolamine were decreased in infected mice. In contrast, the predominant lung phospholipid, dipalmitoyl phosphatidylcholine, was not decreased following SARS-CoV-2 infection. Additionally total plasmenylcholine levels were decreased in the plasma of SARS-CoV-2 infected mice. Collectively, these data demonstrate the loss of plasmalogens during both sepsis and SARS-CoV-2 infection. This study also indicates plasma plasmalogens should be considered in future studies as biomarkers of infection and as prognostic indicators for sepsis and COVID-19 outcomes.

10.
Front Endocrinol (Lausanne) ; 13: 898810, 2022.
Article in English | MEDLINE | ID: mdl-35795152

ABSTRACT

To combat the immense toll on global public health induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), new vaccines were developed. While these vaccines have protected the populations who received them from severe SARS-CoV-2 infection, the effectiveness and durability of these vaccines in individuals with obesity are not fully understood. Our uncertainty of the ability of these novel vaccines to induce protective immunity in humans with obesity stems from historical data that revealed obesity-associated immune defects to influenza vaccines. This review analyzes the efficacy of SARS-CoV-2 vaccines in humans with obesity. According to the vaccine safety and efficacy information for the Pfizer, Moderna, and Johnson & Johnson formulations, these vaccines showed a similar efficacy in both individuals with and without obesity. However, clinical trials that assess BMI and central obesity showed that induced antibody titers are lower in individuals with obesity when compared to healthy weight subjects, highlighting a potential early waning of vaccine-induced antibodies linked to obesity rates. Thus, the desired protective effects of SARS-CoV-2 vaccination were potentially diminished in humans with obesity when compared to the healthy weight population, but further studies outlining functional implications of the link between obesity and lower antibody titers need to be conducted to understand the full impact of this immune phenomenon. Further, additional research must be completed to truly understand the immune responses mounted against SARS-CoV-2 in patients with obesity, and whether these responses differ from those elicited by previously studied influenza viruses.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Obesity/complications , SARS-CoV-2 , Vaccination
11.
STAR Protoc ; 3(3): 101473, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35755126

ABSTRACT

The development of high-throughput assays measuring Powassan virus (POWV) lineage I and II represents an important step in virological and immunological studies. By adapting focus-forming assays previously optimized for West Nile virus and Zika virus, this protocol is able to determine viral load, evaluate antivirals, and measure neutralizing antibodies. Although limited by its requirement of a detection antibody, this protocol includes a rapid and high-throughput assay for measuring viral titer. By utilizing a baby hamster kidney cell line and a 96-well plate format, this protocol allows for more sensitivity in the detection of POWV lineage I. For complete details on the use and execution of this protocol, please refer to Stone et al. (2022).


Subject(s)
Encephalitis Viruses, Tick-Borne , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Antibodies, Neutralizing , Cricetinae , Viral Load
12.
mSphere ; 7(4): e0019322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35703544

ABSTRACT

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , SARS-CoV-2 , Serologic Tests/methods
13.
medRxiv ; 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35262095

ABSTRACT

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

14.
Cell Rep ; 38(7): 110388, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172138

ABSTRACT

Powassan virus (POWV) is a tick-borne pathogen for which humans are an incidental host. POWV infection can be fatal or result in long-term neurological sequelae; however, there are no approved vaccinations for POWV. Integral to efficacious vaccine development is the identification of correlates of protection, which we accomplished in this study by utilizing a murine model of POWV infection. Using POWV lethal and sub-lethal challenge models, we show that (1) robust B and T cell responses are necessary for immune protection, (2) POWV lethality can be attributed to both viral- and host-mediated drivers of disease, and (3) knowledge of the immune correlates of protection against POWV can be applied in a virus-like particle (VLP)-based vaccination approach that provides protection from lethal POWV challenge. Identification of these immune protection factors is significant as it will aid in the rational design of POWV vaccines.


Subject(s)
B-Lymphocytes/immunology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/prevention & control , T-Lymphocytes/immunology , Vaccination , Virion/immunology , Animals , Antibodies, Viral/immunology , Antibody Formation/immunology , Antibody Specificity/immunology , Disease Models, Animal , Encephalitis, Tick-Borne/virology , Host-Pathogen Interactions/immunology , Mice, Inbred C57BL
15.
iScience ; 25(1): 103553, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34877479

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019. Few studies have compared replication dynamics and host responses to SARS-CoV-2 in cell lines from different tissues and species. Therefore, we investigated the role of tissue type and antiviral genes during SARS-CoV-2 infection in nonhuman primate (kidney) and human (liver, respiratory epithelial, gastric) cell lines. We report different viral growth kinetics and release among the cell lines despite comparable ACE2 expression. Transcriptomics revealed that absence of STAT1 in nonhuman primate cells appeared to enhance inflammatory responses without effecting infectious viral titer. Deletion of RL-6 in respiratory epithelial cells increased viral replication. Impaired infectious virus release was detected in Huh7 but not Huh7.5 cells, suggesting a role for RIG1. Gastric cells MKN45 exhibited robust antiviral gene expression and supported viral replication. Data here provide insight into molecular pathogenesis of and alternative cell lines for studying SARS-CoV-2 infection.

16.
J Leukoc Biol ; 110(6): 1225-1239, 2021 12.
Article in English | MEDLINE | ID: mdl-34730254

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-2019 (COVID-19), a respiratory disease that varies in severity from mild to severe/fatal. Several risk factors for severe disease have been identified, notably age, male sex, and pre-existing conditions such as diabetes, obesity, and hypertension. Several advancements in clinical care have been achieved over the past year, including the use of corticosteroids (e.g., corticosteroids) and other immune-modulatory treatments that have now become standard of care for patients with acute severe COVID-19. While the understanding of the mechanisms that underlie increased disease severity with age has improved over the past few months, it remains incomplete. Furthermore, the molecular impact of corticosteroid treatment on host response to acute SARS-CoV-2 infection has not been investigated. In this study, a cross-sectional and longitudinal analysis of Ab, soluble immune mediators, and transcriptional responses in young (65 ≤ years) and aged (≥ 65 years) diabetic males with obesity hospitalized with acute severe COVID-19 was conducted. Additionally, the transcriptional profiles in samples obtained before and after corticosteroids became standard of care were compared. The analysis indicates that severe COVID-19 is characterized by robust Ab responses, heightened systemic inflammation, increased expression of genes related to inflammatory and pro-apoptotic processes, and reduced expression of those important for adaptive immunity regardless of age. In contrast, COVID-19 patients receiving steroids did not show high levels of systemic immune mediators and lacked transcriptional indicators of heightened inflammatory and apoptotic responses. Overall, these data suggest that inflammation and cell death are key drivers of severe COVID-19 pathogenesis in the absence of corticosteroid therapy.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19 Drug Treatment , COVID-19/immunology , Inflammation/immunology , Transcriptome/drug effects , Adult , Aged , Cross-Sectional Studies , Humans , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2 , Transcriptome/immunology
17.
Viruses ; 13(10)2021 09 30.
Article in English | MEDLINE | ID: mdl-34696403

ABSTRACT

Both the SARS-CoV-2 pandemic and emergence of variants of concern have highlighted the need for functional antibody assays to monitor the humoral response over time. Antibodies directed against the spike (S) protein of SARS-CoV-2 are an important component of the neutralizing antibody response. In this work, we report that in a subset of patients-despite a decline in total S-specific antibodies-neutralizing antibody titers remain at a similar level for an average of 98 days in longitudinal sampling of a cohort of 59 Hispanic/Latino patients exposed to SARS-CoV-2. Our data suggest that 100% of seroconverting patients make detectable neutralizing antibody responses which can be quantified by a surrogate viral neutralization test. Examination of sera from ten out of the 59 subjects which received mRNA-based vaccination revealed that both IgG titers and neutralizing activity of sera were higher after vaccination compared to a cohort of 21 SARS-CoV-2 naïve subjects. One dose was sufficient for the induction of a neutralizing antibody, but two doses were necessary to reach 100% surrogate virus neutralization in subjects irrespective of previous SARS-CoV-2 natural infection status. Like the pattern observed after natural infection, the total anti-S antibodies titers declined after the second vaccine dose; however, neutralizing activity remained relatively constant for more than 80 days after the first vaccine dose. Furthermore, our data indicates that-compared with mRNA vaccination-natural infection induces a more robust humoral immune response in unexposed subjects. This work is an important contribution to understanding the natural immune response to the novel coronavirus in a population severely impacted by SARS-CoV-2. Furthermore, by comparing the dynamics of the immune response after the natural infection vs. the vaccination, these findings suggest that functional neutralizing antibody tests are more relevant indicators than the presence or absence of binding antibodies.


Subject(s)
Immunity, Humoral/physiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/physiology , Adult , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/physiopathology , COVID-19 Vaccines/immunology , Female , Follow-Up Studies , Humans , Immunity, Humoral/genetics , Immunity, Humoral/immunology , Male , Middle Aged , Protein Binding/genetics , Protein Domains/genetics , Puerto Rico/epidemiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
18.
Front Immunol ; 12: 739025, 2021.
Article in English | MEDLINE | ID: mdl-34531877

ABSTRACT

A rise in adiposity in the United States has resulted in more than 70% of adults being overweight or obese, and global obesity rates have tripled since 1975. Following the 2009 H1N1 pandemic, obesity was characterized as a risk factor that could predict severe infection outcomes to viral infection. Amidst the SARS-CoV-2 pandemic, obesity has remained a significant risk factor for severe viral disease as obese patients have a higher likelihood for developing severe symptoms and requiring hospitalization. However, the mechanism by which obesity enhances viral disease is unknown. In this study, we utilized a diet-induced obesity mouse model of West Nile virus (WNV) infection, a flavivirus that cycles between birds and mosquitoes and incidentally infects both humans and mice. Likelihood for severe WNV disease is associated with risk factors such as diabetes that are comorbidities also linked to obesity. Utilizing this model, we showed that obesity-associated chronic inflammation increased viral disease severity as obese female mice displayed higher mortality rates and elevated viral titers in the central nervous system. In addition, our studies highlighted that obesity also dysregulates host acute adaptive immune responses, as obese female mice displayed significant dysfunction in neutralizing antibody function. These studies highlight that obesity-induced immunological dysfunction begins at early time points post infection and is sustained through memory phase, thus illuminating a potential for obesity to alter the differentiation landscape of adaptive immune cells.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytokines/blood , Obesity/immunology , West Nile Fever/mortality , West Nile virus/immunology , Animals , COVID-19/pathology , Disease Models, Animal , Female , Humans , Inflammation/pathology , Liver/injuries , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Obesity/pathology , Severity of Illness Index , West Nile Fever/immunology , West Nile Fever/pathology
19.
Front Immunol ; 12: 717425, 2021.
Article in English | MEDLINE | ID: mdl-34552587

ABSTRACT

The closely related flaviviruses, dengue and Zika, cause significant human disease throughout the world. While cross-reactive antibodies have been demonstrated to have the capacity to potentiate disease or mediate protection during flavivirus infection, the mechanisms responsible for this dichotomy are still poorly understood. To understand how the human polyclonal antibody response can protect against, and potentiate the disease in the context of dengue and Zika virus infection we used intravenous hyperimmunoglobulin (IVIG) preparations in a mouse model of the disease. Three IVIGs (ZIKV-IG, Control-Ig and Gamunex®) were evaluated for their ability to neutralize and/or enhance Zika, dengue 2 and 3 viruses in vitro. The balance between virus neutralization and enhancement provided by the in vitro neutralization data was used to predict the IVIG concentrations which could protect or enhance Zika, and dengue 2 disease in vivo. Using this approach, we were able to define the unique in vivo dynamics of complex polyclonal antibodies, allowing for both enhancement and protection from flavivirus infection. Our results provide a novel understanding of how polyclonal antibodies interact with viruses with implications for the use of polyclonal antibody therapeutics and the development and evaluation of the next generation flavivirus vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Host-Pathogen Interactions/immunology , Immunoglobulins, Intravenous , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/immunology , Animals , Cell Line , Cross Reactions/immunology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Immunoglobulins, Intravenous/therapeutic use , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Neutralization Tests , Zika Virus Infection/blood , Zika Virus Infection/drug therapy
20.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34452006

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.

SELECTION OF CITATIONS
SEARCH DETAIL
...