Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Platelets ; 34(1): 2139821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36377063

ABSTRACT

Exercise training (ET) can lower platelet reactivity in patients with cardiovascular risk factors. However, the effects of ET on platelet reactivity in higher-risk patients is unknown. The aim of this study was to evaluate the effects of ET on platelet reactivity in patients with recent myocardial infarction (MI). Ninety patients were randomly assigned 1 month post-MI to the intervention (patients submitted to a supervised ET program) or control group. All patients were on dual antiplatelet therapy (DAPT). Platelet reactivity by VerifyNow-P2Y12 (measured by P2Y12 reaction units - PRUs) test was determined at baseline and at the end of 14 ± 2 weeks of follow-up at rest (primary endpoint), and multiplate electrode aggregometry (MEA) adenosine diphosphate (ADP) and aspirin (ASPI) tests were performed immediately before and after the maximal cardiopulmonary exercise test (CPET) at the same time points (secondary endpoints). Sixty-five patients (mean age 58.9 ± 10 years; 73.8% men; 60% ST elevation MI) completed follow-up (control group, n = 31; intervention group, n = 34). At the end of the follow-up, the mean platelet reactivity was 172.8 ± 68.9 PRUs and 166.9 ± 65.1 PRUs for the control and intervention groups, respectively (p = .72). Platelet reactivity was significantly increased after the CPET compared to rest at the beginning and at the end of the 14-week follow-up (among the intervention groups) by the MEA-ADP and MEA-ASPI tests (p < .01 for all analyses). In post-MI patients on DAPT, 14 weeks of supervised ET did not reduce platelet reactivity. Moreover, platelet reactivity was increased after high-intensity exercise (ClinicalTrials.gov: NCT02958657; https://clinicaltrials.gov/ct2/show/NCT02958657).


What is the context? Platelet reactivity is reduced after exercise training in healthy individuals and patients with cardiovascular risk factors, but the effect in higher-risk patients is unknown.High-intensity exercise in untrained individuals increases platelet reactivity. The effect of dual antiplatelet therapy in inhibiting exercise-induced hyperreactivity is poorly understood.What's new?Exercise training did not reduce platelet reactivity in post-myocardial infarction patients.High-intensity exercise increased platelet reactivity in post-myocardial infarction patients on dual antiplatelet therapy.Exercise training did not attenuate the exercise-induced increase in platelet reactivity.What's the impact?The study suggests that strenuous exercise, if indicated, should be applied carefully to patients with high risk of recurrent ischemic events, even if on optimal medical therapy and after being trained.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , Male , Humans , Middle Aged , Aged , Female , Platelet Aggregation Inhibitors/adverse effects , Blood Platelets , Myocardial Infarction/drug therapy , Aspirin/adverse effects , Adenosine Diphosphate/pharmacology , Percutaneous Coronary Intervention/adverse effects , Platelet Aggregation
2.
Int J Cardiol Heart Vasc ; 13: 14-18, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28616554

ABSTRACT

PURPOSE: Muscle vasodilatation during exercise has been associated with cardiovascular health and may be influenced by genetic variability. The purpose of this study was to evaluate functional genetic polymorphisms of physiologic pathways related to the regulation of the cardiovascular function (alpha-adrenergic receptors, endothelial nitric oxide synthase and bradykinin B2 receptor) and exercise muscle vasodilatation in apparently healthy men and women. METHODS: We enrolled 689 individuals without established cardiovascular disease that had attended a check-up program. The vasodilatation was studied with venous occlusion plethysmography and determined by the increase of vascular conductance during handgrip exercise. Genotypes for ADRA1A Arg347Cys (rs1048101), ADRA2A 1780 C > T (rs553668), ADRA2B Del 301-303 (rs28365031), eNOS 786 T > C (rs2070744), eNOS Glu298Asp (rs1799983) and BDKRB2 (rs5810761) polymorphisms were assessed by polymerase chain reaction followed by high resolution melting analysis. RESULTS: The eNOS rs2070744 polymorphism was significantly associated with forearm vascular conductance during exercise in women. Women with CC genotype showed higher vasodilatation than carriers of TC and TT genotypes (p = 0.043). The ADRA2A rs553668 polymorphism was significantly associated with forearm vascular conductance during exercise in men. Men with TT genotype had higher vasodilatation than carriers of CT and CC genotypes (p = 0.025). CONCLUSIONS: eNOS rs207074 polymorphism in women and ADRA2A rs553668 polymorphism in men were associated with the increase of forearm vascular conductance during handgrip exercise. These findings suggest that eNOS and ADRA2A genetic polymorphisms may be potential markers of exercise muscle vasodilatation.

SELECTION OF CITATIONS
SEARCH DETAIL
...