Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 148(20): 5221-5232, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37724415

ABSTRACT

Pyrolysis is a promising way to convert plastic waste into valuable resources. However, for downstream upgrading processes, many undesirable species, such as conjugated diolefins or heteroatom-containing compounds, can be generated during this pyrolysis. In-depth chemical characterization is therefore required to improve conversion and valorization. Because of the high molecular diversity found in these samples, advanced analytical instrumentation is needed to provide accurate and complete characterization. Generally, direct infusion Fourier transform mass spectrometry is used to gather information at the molecular level, but it has the disadvantage of limited structural insights. To overcome this drawback, gas chromatography has been coupled to Fourier transform ion cyclotron resonance mass spectrometry. By taking advantage of soft atmospheric pressure photoionization, which preserves molecular information, and the use of different dopants (pyrrole, toluene, and benzene), selective ionization of different chemical families was achieved. Differences in the ionization energy of the dopants will only allow the ionization of the molecules of the pyrolysis oil which have lower ionization energy, or which are accessible via specific chemical ionization pathways. With a selective focus on hydrocarbon species and especially hydrocarbon species having a double bond equivalent (DBE) value of 2, pyrrole is prone to better ionize low-mass molecules with lower retention times compared to the dopant benzene, which allowed better ionization of high-mass molecules with higher retention times. The toluene dopant presented the advantage of ionizing both low and high mass molecules.

2.
Anal Chem ; 95(31): 11761-11768, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37490591

ABSTRACT

Here, we show the potential and applicability of the novel GC-combustion-MS approach as a nitrogen-selective GC detector. Operating requirements to achieve reproducible and compound-independent formation of volatile NO species as a selective N-signal during the combustion step are described. Specifically, high temperatures (≥1000 °C) and post-column O2 flows (0.4 mL min-1 of 0.3% O2 in He) turned out to be necessary when using a vertical oven without makeup flow (prototype #1). In contrast, the use of a horizontal oven with 1.7 mL min-1 He as an additional makeup flow (prototype #2) required milder conditions (850 °C and 0.2 mL min-1). A detection limit of 0.02 pg of N injected was achieved, which is by far the lowest ever reported for any GC detector. Equimolarity, linearity, and peak shape were also adequate. Validation of the approach was performed by the analysis of a certified reference material obtaining accurate (2% error) and precise (2% RSD) results. Robustness was tested with the analysis of two complex samples with different matrices (diesel and biomass pyrolysis oil) and N concentration levels. Total N determined after the integration of the whole chromatograms (524 ± 22 and 11,140 ± 330 µg N g-1, respectively) was in good agreement with the reference values (497 ± 10 and 11,000 ± 1200 µg N g-1, respectively). In contrast, GC-NCD results were lower for the diesel sample (394 ± 42 µg N g-1). Quantitative values for the individual and families of N species identified in the real samples by parallel GC-MS and additional GC × GC-MS analyses were also obtained using a single generic internal standard.

3.
Talanta ; 252: 123799, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36027621

ABSTRACT

According to the annual production of plastics worldwide, in 2020 about 370 million tons of plastic were produced in the world. Chemical recycling, particularly pyrolysis of plastic wastes, could be a valuable solution to resolve these problems and provide an alternative pathway to produce "recycled" chemical products for the petrochemical industry. Nevertheless, the pyrolysis oils need a detailed characterization before the upgrading test to re-use them to generate new recycled products. Multidimensional gas chromatography coupled with both low- and high-resolution time-of-flight mass spectrometers was employed for a detailed investigation among and within different chemical classes present in bio-plastic oil. The presence of several isomeric species as well as homologs series did not allow a reliable molecular identification, except for a few compounds that showed both MS similarity >800/1000 and retention index within ±20. Indeed, the identification of several isomeric species was assessed by high-resolution mass spectrometry equipped with photoionization interface. This soft ionization mode was an additional filter in the identification step allowing unambiguous identification of analytes not identified by the standard electron ionization mode at 70 eV. The injection method was also optimized using a central composite design to successfully introduce a wide range of carbon number compounds without discrimination of low/high boiling points.


Subject(s)
Plastics , Pyrolysis , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Plant Oils/chemistry , Organic Chemicals
4.
Talanta ; 238(Pt 2): 123019, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34801891

ABSTRACT

The production of renewable fuels as biodiesel and bio-jet fuel is usually originated by the transformation and processing of oleaginous feedstocks, mainly composed of triacylglycerols. Currently, a significant part of the triacylglycerol production relies on grassy oil crops or other woody oil plants, representing more than 120 million metric tons every year. Considering that the worldwide triacylglycerol demand is expected to rise in the future, alternative routes are necessary to ensure a sustainable biodiesel industry and limit diesel price volatility. In this context, the use of animal fats could be an interesting alternative for biodiesel production as the production of animal byproducts represents nearly 17 million tons per year in the European Union only (2020). Animal fats, however, contain large amounts of no-esterified fatty acids and other oxygen compounds, reducing the yield of biodiesel. Therefore, a specific pretreatment is needed before the trans-esterification process. The setup of such appropriate pretreatments requires detailed upstream characterization of the minor components present in the feedstock. For this purpose, the minor component profile of animal fat was investigated by comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry. This was preceded by an innovative sample fractionation and focalization of these minor components by a preparative liquid chromatographic column method. The overall method permitted to extract different levels of information from the two-dimensional chromatograms, leading to a tentative identification of more than 150 compounds, mainly oxygenated, belonging to different chemical classes.


Subject(s)
Biofuels , Oxygen Compounds , Animals , Biofuels/analysis , Chromatography, Gas , Chromatography, Liquid , Mass Spectrometry , Oxygen
5.
J Sep Sci ; 44(1): 115-134, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33185940

ABSTRACT

A wide variety of biomass, from triglycerides to lignocellulosic-based feedstock, are among promising candidates to possibly fulfill requirements as a substitute for crude oils as primary sources of chemical energy feedstock. During the feedstock processing carried out to increase the H:C ratio of the products, heteroatom-containing compounds can promote corrosion, thus limiting and/or deactivating catalytic processes needed to transform the biomass into fuel. The use of advanced gas chromatography techniques, in particular multi-dimensional gas chromatography, both heart-cutting and comprehensive coupled to mass spectrometry, has been widely exploited in the field of petroleomics over the past 30 years and has also been successfully applied to the characterization of volatile and semi-volatile compounds during the processing of biomass feedstock. This review intends to describe advanced gas chromatography-mass spectrometry-based techniques, mainly focusing in the period 2011-early 2020. Particular emphasis has been devoted to the multi-dimensional gas chromatography-mass spectrometry techniques, for the isolation and characterization of the oxygen-containing compounds in biomass feedstock. Within this context, the most recent advances to sample preparation, derivatization, as well as gas chromatography instrumentation, mass spectrometry ionization, identification, and data handling in the biomass industry, are described.


Subject(s)
Biofuels/analysis , Oxygen/analysis , Biomass , Gas Chromatography-Mass Spectrometry
6.
Anal Chem ; 90(18): 10758-10764, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30096227

ABSTRACT

Unknown metabolites represent a bottleneck in untargeted metabolomics research. Ion mobility-mass spectrometry (IM-MS) facilitates lipid identification because it yields collision cross section (CCS) information that is independent from mass or lipophilicity. To date, only a few CCS values are publicly available for complex lipids such as phosphatidylcholines, sphingomyelins, or triacylglycerides. This scarcity of data limits the use of CCS values as an identification parameter that is orthogonal to mass, MS/MS, or retention time. A combination of lipid descriptors was used to train five different machine learning algorithms for automatic lipid annotations, combining accurate mass ( m/ z), retention time (RT), CCS values, carbon number, and unsaturation level. Using a training data set of 429 true positive lipid annotations from four lipid classes, 92.7% correct annotations overall were achieved using internal cross-validation. The trained prediction model was applied to an unknown milk lipidomics data set and allowed for class 3 level annotations of most features detected in this application set according to Metabolomics Standards Initiative (MSI) reporting guidelines.


Subject(s)
Chromatography, Liquid/methods , Ion Mobility Spectrometry/methods , Lipids/chemistry , Algorithms , Animals , Cattle , Databases, Factual , Metabolomics , Milk/chemistry , Reproducibility of Results
7.
J Sep Sci ; 41(5): 1112-1117, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29227027

ABSTRACT

The present research is based on the concept of using a 10 m × 0.1 mm id column for cryogenic-modulation fast comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry. Specifically, an 8.9 m × 0.1 mm id low-polarity column was used as the first dimension, and a 1.1 m × 0.1 mm id medium-polarity column was used as the second dimension. The main scope of the investigation was to develop a high peak-capacity method, with an analysis time of approximately 10 min. Various aspects related to method optimization are discussed, as well as separation parameters such as peak capacity (in each dimension, and as a total value), first-dimension sample capacity, peak widths, modulation ratio, sensitivity enhancement, and number of spectra per peak. The fast approach was evaluated in applications involving a mixture of cosmetic allergens and a sample of perfume. The approach proposed enables high-resolution separations in a short time (across the C8 -C23 alkane range), as well as a considerable reduction of the consumption of gases for modulation cooling and heating.


Subject(s)
Allergens/analysis , Cosmetics/analysis , Chromatography, Gas , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...