Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
Clin Cancer Res ; 30(4): 895-903, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38078899

ABSTRACT

PURPOSE: Detection of circulating tumor DNA (ctDNA) in patients who have completed treatment for early-stage breast cancer is associated with a high risk of relapse, yet the optimal assay for ctDNA detection is unknown. EXPERIMENTAL DESIGN: The cTRAK-TN clinical trial prospectively used tumor-informed digital PCR (dPCR) assays for ctDNA molecular residual disease (MRD) detection in early-stage triple-negative breast cancer. We compared tumor-informed dPCR assays with tumor-informed personalized multimutation sequencing assays in 141 patients from cTRAK-TN. RESULTS: MRD was first detected by personalized sequencing in 47.9% of patients, 0% first detected by dPCR, and 52.1% with both assays simultaneously (P < 0.001; Fisher exact test). The median lead time from ctDNA detection to relapse was 6.1 months with personalized sequencing and 3.9 months with dPCR (P = 0.004, mixed-effects Cox model). Detection of MRD at the first time point was associated with a shorter time to relapse compared with detection at subsequent time points (median lead time 4.2 vs. 7.1 months; P = 0.02). CONCLUSIONS: Personalized multimutation sequencing assays have potential clinically important improvements in clinical outcome in the early detection of MRD.


Subject(s)
Circulating Tumor DNA , Triple Negative Breast Neoplasms , Humans , Circulating Tumor DNA/genetics , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/genetics , Neoplasm Recurrence, Local/pathology , Recurrence , Biomarkers, Tumor/genetics , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics
3.
JAMA Netw Open ; 6(7): e2325332, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37490292

ABSTRACT

Importance: Liquid biopsy has emerged as a complement to tumor tissue profiling for advanced non-small cell lung cancer (NSCLC). The optimal way to integrate liquid biopsy into the diagnostic algorithm for patients with newly diagnosed advanced NSCLC remains unclear. Objective: To evaluate the use of circulating tumor DNA (ctDNA) genotyping before tissue diagnosis among patients with suspected advanced NSCLC and its association with time to treatment. Design, Setting, and Participants: This single-group nonrandomized clinical trial was conducted among 150 patients at the Princess Margaret Cancer Centre-University Health Network (Toronto, Ontario, Canada) between July 1, 2021, and November 30, 2022. Patients referred for investigation and diagnosis of lung cancer were eligible if they had radiologic evidence of advanced lung cancer prior to a tissue diagnosis. Interventions: Patients underwent plasma ctDNA testing with a next-generation sequencing (NGS) assay before lung cancer diagnosis. Diagnostic biopsy and tissue NGS were performed per standard of care. Main Outcome and Measures: The primary end point was time from referral to treatment initiation among patients with advanced nonsquamous NSCLC using ctDNA testing before diagnosis (ACCELERATE [Accelerating Lung Cancer Diagnosis Through Liquid Biopsy] cohort). This cohort was compared with a reference cohort using standard tissue genotyping after tissue diagnosis. Results: Of the 150 patients (median age at diagnosis, 68 years [range, 33-91 years]; 80 men [53%]) enrolled, 90 (60%) had advanced nonsquamous NSCLC. The median time to treatment was 39 days (IQR, 27-52 days) for the ACCELERATE cohort vs 62 days (IQR, 44-82 days) for the reference cohort (P < .001). Among the ACCELERATE cohort, the median turnaround time from sample collection to genotyping results was 7 days (IQR, 6-9 days) for plasma and 23 days (IQR, 18-28 days) for tissue NGS (P < .001). Of the 90 patients with advanced nonsquamous NSCLC, 21 (23%) started targeted therapy before tissue NGS results were available, and 11 (12%) had actionable alterations identified only through plasma testing. Conclusions and Relevance: This nonrandomized clinical trial found that the use of plasma ctDNA genotyping before tissue diagnosis among patients with suspected advanced NSCLC was associated with accelerated time to treatment compared with a reference cohort undergoing standard tissue testing. Trial Registration: ClinicalTrials.gov Identifier: NCT04863924.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Male , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Time-to-Treatment , Ontario
4.
Nat Med ; 29(3): 588-592, 2023 03.
Article in English | MEDLINE | ID: mdl-36732628

ABSTRACT

Cohort 1 of the phase 1B NABUCCO trial showed high pathological complete response (pCR) rates with preoperative ipilimumab plus nivolumab in stage III urothelial cancer (UC). In cohort 2, the aim was dose adjustment to optimize responses. Additionally, we report secondary endpoints, including efficacy and tolerability, in cohort 2 and the association of presurgical absence of circulating tumor DNA (ctDNA) in urine and plasma with clinical outcome in both cohorts. Thirty patients received two cycles of either ipilimumab 3 mg kg-1 plus nivolumab 1 mg kg-1 (cohort 2A) or ipilimumab 1 mg kg-1 plus nivolumab 3 mg kg-1 (cohort 2B), both followed by nivolumab 3 mg kg-1. We observed a pCR in six (43%) patients in cohort 2A and a pCR in one (7%) patient in cohort 2B. Absence of urinary ctDNA correlated with pCR in the bladder (ypT0Nx) but not with progression-free survival (PFS). Absence of plasma ctDNA correlated with pCR (odds ratio: 45.0; 95% confidence interval (CI): 4.9-416.5) and PFS (hazard ratio: 10.4; 95% CI: 2.9-37.5). Our data suggest that high-dose ipilimumab plus nivolumab is required in stage III UC and that absence of ctDNA in plasma can predict PFS. ClinicalTrials.gov registration: NCT03387761 .


Subject(s)
Neoplasms , Nivolumab , Humans , Nivolumab/adverse effects , Ipilimumab/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoplasms/chemically induced , Progression-Free Survival
5.
Br J Cancer ; 126(8): 1186-1195, 2022 05.
Article in English | MEDLINE | ID: mdl-35132238

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) remain a substantial burden to global health. Cell-free circulating tumour DNA (ctDNA) is an emerging biomarker but has not been studied sufficiently in HNSCC. METHODS: We conducted a single-centre prospective cohort study to investigate ctDNA in patients with p16-negative HNSCC who received curative-intent primary surgical treatment. Whole-exome sequencing was performed on formalin-fixed paraffin-embedded (FFPE) tumour tissue. We utilised RaDaRTM, a highly sensitive personalised assay using deep sequencing for tumour-specific variants, to analyse serial pre- and post-operative plasma samples for evidence of minimal residual disease and recurrence. RESULTS: In 17 patients analysed, personalised panels were designed to detect 34 to 52 somatic variants. Data show ctDNA detection in baseline samples taken prior to surgery in 17 of 17 patients. In post-surgery samples, ctDNA could be detected at levels as low as 0.0006% variant allele frequency. In all cases with clinical recurrence to date, ctDNA was detected prior to progression, with lead times ranging from 108 to 253 days. CONCLUSIONS: This study illustrates the potential of ctDNA as a biomarker for detecting minimal residual disease and recurrence in HNSCC and demonstrates the feasibility of personalised ctDNA assays for the detection of disease prior to clinical recurrence.


Subject(s)
Circulating Tumor DNA , Head and Neck Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Head and Neck Neoplasms/diagnosis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/surgery , Humans , Liquid Biopsy , Neoplasm, Residual/genetics , Prospective Studies , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/surgery
6.
Eur J Cancer ; 162: 221-236, 2022 02.
Article in English | MEDLINE | ID: mdl-34980502

ABSTRACT

INTRODUCTION: Olfactory neuroblastoma (ONB) is a rare cancer of the sinonasal region. We provide a comprehensive analysis of this malignancy with molecular and clinical trial data on a subset of our cohort to report on the potential efficacy of somatostatin receptor 2 (SSTR2)-targeting imaging and therapy. METHODS: We conducted a retrospective analysis of 404 primary, locally recurrent, and metastatic olfactory neuroblastoma (ONB) patients from 12 institutions in the United States of America, United Kingdom and Europe. Clinicopathological characteristics and treatment approach were evaluated. SSTR2 expression, SSTR2-targeted imaging and the efficacy of peptide receptor radionuclide therapy [PRRT](177Lu-DOTATATE) were reported in a subset of our cohort (LUTHREE trial; NCT03454763). RESULTS: Dural infiltration at presentation was a significant predictor of overall survival (OS) and disease-free survival (DFS) in primary cases (n = 278). Kadish-Morita staging and Dulguerov T-stage both had limitations regarding their prognostic value. Multivariable survival analysis demonstrated improved outcomes with lower stage and receipt of adjuvant radiotherapy. Prophylactic neck irradiation significantly reduces the rate of nodal recurrence. 82.4% of the cohort were positive for SSTR2; treatment of three metastatic cases with SSTR2-targeted peptide-radionuclide receptor therapy (PRRT) in the LUTHREE trial was well-tolerated and resulted in stable disease (SD). CONCLUSIONS: This study presents pertinent clinical data from the largest dataset, to date, on ONB. We identify key prognostic markers and integrate these into an updated staging system, highlight the importance of adjuvant radiotherapy across all disease stages, the utility of prophylactic neck irradiation and the potential efficacy of targeting SSTR2 to manage disease.


Subject(s)
Esthesioneuroblastoma, Olfactory , Neuroblastoma , Nose Neoplasms , Esthesioneuroblastoma, Olfactory/pathology , Esthesioneuroblastoma, Olfactory/therapy , Humans , Nasal Cavity/metabolism , Nasal Cavity/pathology , Neuroblastoma/pathology , Nose Neoplasms/radiotherapy , Positron-Emission Tomography , Radioisotopes , Radionuclide Imaging , Receptors, Somatostatin/metabolism , Retrospective Studies
7.
Nat Commun ; 12(1): 117, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33402692

ABSTRACT

Nasopharyngeal cancer (NPC), endemic in Southeast Asia, lacks effective diagnostic and therapeutic strategies. Even in high-income countries the 5-year survival rate for stage IV NPC is less than 40%. Here we report high somatostatin receptor 2 (SSTR2) expression in multiple clinical cohorts comprising 402 primary, locally recurrent and metastatic NPCs. We show that SSTR2 expression is induced by the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) via the NF-κB pathway. Using cell-based and preclinical rodent models, we demonstrate the therapeutic potential of SSTR2 targeting using a cytotoxic drug conjugate, PEN-221, which is found to be superior to FDA-approved SSTR2-binding cytostatic agents. Furthermore, we reveal significant correlation of SSTR expression with increased rates of survival and report in vivo uptake of the SSTR2-binding 68Ga-DOTA-peptide radioconjugate in PET-CT scanning in a clinical trial of NPC patients (NCT03670342). These findings reveal a key role in EBV-associated NPC for SSTR2 in infection, imaging, targeted therapy and survival.


Subject(s)
Epstein-Barr Virus Infections , Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Recurrence, Local , Receptors, Somatostatin , Viral Matrix Proteins , Animals , Female , Humans , Male , Mice , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Epstein-Barr Virus Infections/drug therapy , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/mortality , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/growth & development , Herpesvirus 4, Human/pathogenicity , Host-Pathogen Interactions/genetics , Lymphatic Metastasis , Mice, Nude , Molecular Targeted Therapy , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/virology , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/virology , NF-kappa B/genetics , NF-kappa B/metabolism , Octreotide/pharmacology , Positron Emission Tomography Computed Tomography , Receptors, Somatostatin/antagonists & inhibitors , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Signal Transduction , Survival Analysis , Viral Matrix Proteins/antagonists & inhibitors , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Xenograft Model Antitumor Assays
8.
Commun Biol ; 3(1): 740, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33288854

ABSTRACT

Recent data suggest that Pancreatic Neuroendocrine Tumours (PanNETs) originate from α- or ß-cells of the islets of Langerhans. The majority of PanNETs are non-functional and do not express cell-type specific hormones. In the current study we examine whether tumour DNA methylation (DNAme) profiling combined with genomic data is able to identify cell of origin and to reveal pathways involved in PanNET progression. We analyse genome-wide DNAme data of 125 PanNETs and sorted α- and ß-cells. To confirm cell identity, we investigate ARX and PDX1 expression. Based on epigenetic similarities, PanNETs cluster in α-like, ß-like and intermediate tumours. The epigenetic similarity to α-cells progressively decreases in the intermediate tumours, which present unclear differentiation. Specific transcription factor methylation and expression vary in the respective α/ß-tumour groups. Depending on DNAme similarity to α/ß-cells, PanNETs have different mutational spectra, stage of the disease and prognosis, indicating potential means of PanNET progression.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/physiology , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/metabolism , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Humans , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics
9.
Cancer Discov ; 10(10): 1489-1499, 2020 10.
Article in English | MEDLINE | ID: mdl-32690541

ABSTRACT

Before squamous cell lung cancer develops, precancerous lesions can be found in the airways. From longitudinal monitoring, we know that only half of such lesions become cancer, whereas a third spontaneously regress. Although recent studies have described the presence of an active immune response in high-grade lesions, the mechanisms underpinning clinical regression of precancerous lesions remain unknown. Here, we show that host immune surveillance is strongly implicated in lesion regression. Using bronchoscopic biopsies from human subjects, we find that regressive carcinoma in situ lesions harbor more infiltrating immune cells than those that progress to cancer. Moreover, molecular profiling of these lesions identifies potential immune escape mechanisms specifically in those that progress to cancer: antigen presentation is impaired by genomic and epigenetic changes, CCL27-CCR10 signaling is upregulated, and the immunomodulator TNFSF9 is downregulated. Changes appear intrinsic to the carcinoma in situ lesions, as the adjacent stroma of progressive and regressive lesions are transcriptomically similar. SIGNIFICANCE: Immune evasion is a hallmark of cancer. For the first time, this study identifies mechanisms by which precancerous lesions evade immune detection during the earliest stages of carcinogenesis and forms a basis for new therapeutic strategies that treat or prevent early-stage lung cancer.See related commentary by Krysan et al., p. 1442.This article is highlighted in the In This Issue feature, p. 1426.


Subject(s)
Carcinoma, Squamous Cell/immunology , Immunologic Surveillance/immunology , Lung Neoplasms/immunology , Humans
10.
Neuroendocrinology ; 110(7-8): 563-573, 2020.
Article in English | MEDLINE | ID: mdl-31658461

ABSTRACT

Neuroendocrine neoplasms (NENs) arise from cells of neuronal and endocrine differentiation. While they are a rare entity, an increasing proportion of patients with NEN present with metastatic disease and no evident primary site using routine imaging or histopathology. NENs of unknown primary site have a poorer prognosis, often due to the challenge of selecting appropriate evidence-based management. We review the available literature and guidelines for the management of NENs of unknown primary site including clinical features, biochemical tests, histopathology, imaging, surgical exploration and localised and systemic treatments. We also discuss novel molecular techniques currently under investigation to aid primary site identification.


Subject(s)
Diagnostic Techniques, Endocrine , Medical Oncology/methods , Neoplasms, Unknown Primary/diagnosis , Neuroendocrine Tumors/diagnosis , Biomarkers, Tumor/analysis , Diagnostic Imaging/methods , Humans , Neoplasms, Unknown Primary/epidemiology , Neoplasms, Unknown Primary/pathology , Neuroendocrine Tumors/epidemiology , Neuroendocrine Tumors/secondary , Pancreatic Neoplasms/diagnosis
11.
Endocr Relat Cancer ; 26(9): R519-R544, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31252410

ABSTRACT

Neuroendocrine neoplasms (NENs) are a relatively rare group of heterogeneous tumours originating from neuroendocrine cells found throughout the body. Pancreatic NENs (PanNENs) are the second most common pancreatic malignancy accounting for 1-3% of all neoplasms developing in the pancreas. Despite having a low background mutation rate, driver mutations in MEN1, DAXX/ATRX and mTOR pathway genes (PTEN, TSC1/2) are implicated in disease development and progression. Their increased incidence coupled with advances in sequencing technologies has reignited the interest in PanNEN research and has accelerated the acquisition of molecular data. Studies utilising such technological advances have further enriched our knowledge of PanNENs' biology through novel findings, including higher-than-expected presence of germline mutations in 17% of sporadic tumours of no familial background, identification of novel mutational signatures and complex chromosomal rearrangements and a dysregulated epigenetic machinery. Integrated genomic studies have progressed the field by identifying the synergistic action between different molecular mechanisms, while holding the promise for deciphering disease heterogeneity. Although our understanding is far from being complete, these novel findings have provided the optimism of shaping the future of PanNEN research, ultimately leading to an era of precision medicine for NETs. Here, we recapitulate the existing knowledge on pancreatic neuroendocrine tumours (PanNETs) and discuss how recent, novel findings have furthered our understanding of these complex tumours.


Subject(s)
Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Epigenesis, Genetic , Humans , Neuroendocrine Tumors/therapy , Pancreatic Neoplasms/therapy
12.
Nat Med ; 25(3): 517-525, 2019 03.
Article in English | MEDLINE | ID: mdl-30664780

ABSTRACT

The molecular alterations that occur in cells before cancer is manifest are largely uncharted. Lung carcinoma in situ (CIS) lesions are the pre-invasive precursor to squamous cell carcinoma. Although microscopically identical, their future is in equipoise, with half progressing to invasive cancer and half regressing or remaining static. The cellular basis of this clinical observation is unknown. Here, we profile the genomic, transcriptomic, and epigenomic landscape of CIS in a unique patient cohort with longitudinally monitored pre-invasive disease. Predictive modeling identifies which lesions will progress with remarkable accuracy. We identify progression-specific methylation changes on a background of widespread heterogeneity, alongside a strong chromosomal instability signature. We observed mutations and copy number changes characteristic of cancer and chart their emergence, offering a window into early carcinogenesis. We anticipate that this new understanding of cancer precursor biology will improve early detection, reduce overtreatment, and foster preventative therapies targeting early clonal events in lung cancer.


Subject(s)
Carcinoma in Situ/genetics , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Carcinogenesis/genetics , Chromosomal Instability/genetics , Cohort Studies , DNA Copy Number Variations , DNA Methylation/genetics , Disease Progression , Epigenomics , Female , Gene Expression Profiling , Genomics , Humans , Longitudinal Studies , Male , Middle Aged , Mutation
14.
JAMA Oncol ; 1(4): 476-85, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26181258

ABSTRACT

IMPORTANCE: The utility of buccal cells as an epithelial source tissue for epigenome-wide association studies (EWASs) remains to be demonstrated. Given the direct exposure of buccal cells to potent carcinogens such as smoke, epigenetic changes in these cells may provide insights into the development of smoke-related cancers. OBJECTIVE: To perform an EWAS in buccal and blood cells to assess the relative effect of smoking on the DNA methylation (DNAme) patterns in these cell types and to test whether these DNAme changes are also seen in epithelial cancer. DESIGN, SETTING, AND PARTICIPANTS: In 2013, we measured DNAme at more than 480,000 CpG sites in buccal samples provided in 1999 by 790 women (all aged 53 years in 1999) from the United Kingdom Medical Research Council National Survey of Health and Development. This included matched blood samples from 152 women. We constructed a DNAme-based smoking index and tested its sensitivity and specificity to discriminate normal from cancer tissue in more than 5000 samples. MAIN OUTCOMES AND MEASURES: CpG sites whose DNAme level correlates with smoking pack-years, and construction of an associated sample-specific smoking index, which measures the mean deviation of DNAme at smoking-associated CpG sites from a normal reference. RESULTS: In a discovery set of 400 women, we identified 1501 smoking-associated CpG sites at a genome-wide significance level of P < 10-7, which were validated in an independent set of 390 women. This represented a 40-fold increase of differentially methylated sites in buccal cells compared with matched blood samples. Hypermethylated sites were enriched for bivalently marked genes and binding sites of transcription factors implicated in DNA repair and chromatin architecture (P < 10-10). A smoking index constructed from the DNAme changes in buccal cells was able to discriminate normal tissue from cancer tissue with a mean receiver operating characteristic area under the curve of 0.99 (range, 0.99-1.00) for lung cancers and of 0.91 (range, 0.71-1.00) for 13 other organs. The corresponding area under the curve of a smoking signature derived from blood cells was lower than that derived from buccal cells in 14 of 15 cancer types (Wilcoxon signed rank test, P = .001). CONCLUSIONS AND RELEVANCE: These data point toward buccal cells as being a more appropriate source of tissue than blood to conduct EWASs for smoking-related epithelial cancers.


Subject(s)
Cell Transformation, Neoplastic/genetics , DNA Methylation , Epithelial Cells/metabolism , Genetic Testing/methods , Lung Neoplasms/genetics , Mouth Mucosa/metabolism , Neoplasms, Glandular and Epithelial/genetics , Smoking/genetics , Area Under Curve , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , CpG Islands , Epithelial Cells/pathology , Female , Genome-Wide Association Study , Humans , Lung Neoplasms/blood , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Middle Aged , Mouth Mucosa/pathology , Neoplasms, Glandular and Epithelial/blood , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Predictive Value of Tests , ROC Curve , Risk Factors , Smoking/adverse effects , United Kingdom
16.
Science ; 345(6196): 1251343, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25082706

ABSTRACT

Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction. Because 3' transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3' transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3' transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3' transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.


Subject(s)
DNA Transposable Elements , Long Interspersed Nucleotide Elements , Neoplasms/genetics , Transduction, Genetic , Carcinogenesis/genetics , Chromatin/chemistry , Exons , Genome, Human , Humans , Mutagenesis, Insertional , Translocation, Genetic
17.
Nat Commun ; 5: 3644, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24714652

ABSTRACT

Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5' truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context.


Subject(s)
Neoplasms/genetics , Pseudogenes/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Pseudogenes/physiology
18.
Thorax ; 69(6): 548-57, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24550057

ABSTRACT

BACKGROUND: Squamous cell carcinoma of the lung is a common cancer with 95% mortality at 5 years. These cancers arise from preinvasive lesions, which have a natural history of development progressing through increasing severity of dysplasia to carcinoma in situ (CIS), and in some cases, ending in transformation to invasive carcinoma. Synchronous preinvasive lesions identified at autopsy have been previously shown to be clonally related. METHODS: Using autofluorescence bronchoscopy that allows visual observation of preinvasive lesions within the upper airways, together with molecular profiling of biopsies using gene sequencing and loss-of-heterozygosity analysis from both preinvasive lesions and from intervening normal tissue, we have monitored individual lesions longitudinally and documented their visual, histological and molecular relationship. RESULTS: We demonstrate that rather than forming a contiguous field of abnormal tissue, clonal CIS lesions can develop at multiple anatomically discrete sites over time. Further, we demonstrate that patients with CIS in the trachea have invariably had previous lesions that have migrated proximally, and in one case, into the other lung over a period of 12 years. CONCLUSIONS: Molecular information from these unique biopsies provides for the first time evidence that field cancerisation of the upper airways can occur through cell migration rather than via local contiguous cellular expansion as previously thought. Our findings urge a clinical strategy of ablating high-grade premalignant airway lesions with subsequent attentive surveillance for recurrence in the bronchial tree.


Subject(s)
Carcinoma in Situ , Carcinoma, Squamous Cell , Cell Movement , Lung Neoplasms , Mutation , Precancerous Conditions , Tracheal Neoplasms , Adult , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Genes, p53 , Humans , Loss of Heterozygosity , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Tracheal Neoplasms/genetics , Tracheal Neoplasms/pathology
19.
Elife ; 2: e00966, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24151545

ABSTRACT

Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to "neutral drift" of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI:http://dx.doi.org/10.7554/eLife.00966.001.


Subject(s)
Stem Cells/metabolism , Stochastic Processes , Trachea/metabolism , Epithelial Cells/metabolism , Humans , Smoking/metabolism , Smoking/pathology , Trachea/cytology
20.
J Pathol ; 224(2): 153-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21506132

ABSTRACT

The term 'field cancerization' is used to describe an epithelial surface that has a propensity to develop cancerous lesions, and in the case of the aerodigestive tract this is often as a result of chronic exposure to carcinogens in cigarette smoke 1, 2. The clinical endpoint is the development of multiple tumours, either simultaneously or sequentially in the same epithelial surface. The mechanisms underlying this process remain unclear; one possible explanation is that the epithelium is colonized by a clonal population of cells that are at increased risk of progression to cancer. We now address this possibility in a short case series, using individual genomic events as molecular biomarkers of clonality. In squamous lung cancer the most common genomic aberration is 3q amplification. We use a digital PCR technique to assess the clonal relationships between multiple biopsies in a longitudinal bronchoscopic study, using amplicon boundaries as markers of clonality. We demonstrate that clonality can readily be defined by these analyses and confirm that field cancerization occurs at a pre-invasive stage and that pre-invasive lesions and subsequent cancers are clonally related. We show that while the amplicon boundaries can be shared between different biopsies, the degree of 3q amplification and the internal structure of the 3q amplicon varies from lesion to lesion. Finally, in this small cohort, the degree of 3q amplification corresponds to clinical progression.


Subject(s)
Bronchi/pathology , Carcinoma, Squamous Cell/pathology , Lung Neoplasms/pathology , Neoplastic Stem Cells/pathology , Precancerous Conditions/pathology , Adult , Biopsy , Carcinoma, Squamous Cell/genetics , Disease Progression , Female , Genomics/methods , Humans , Longitudinal Studies , Lung Neoplasms/genetics , Microdissection/methods , Precancerous Conditions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...