Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Birth Defects Res ; 115(3): 357-370, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36369782

ABSTRACT

BACKGROUND: Human exposures to organophosphate flame retardants result from their use as additives in numerous consumer products. These agents are replacements for brominated flame retardants but have not yet faced similar scrutiny for developmental neurotoxicity. We examined a representative organophosphate flame retardant, triphenyl phosphate (TPP) and its potential effects on behavioral development and dopaminergic function. METHODS: Female Sprague-Dawley rats were given low doses of TPP (16 or 32 mg kg-1  day-1 ) via subcutaneous osmotic minipumps, begun preconception and continued into the early postnatal period. Offspring were administered a battery of behavioral tests from adolescence into adulthood, and littermates were used to evaluate dopaminergic synaptic function. RESULTS: Offspring with TPP exposures showed increased latency to begin eating in the novelty-suppressed feeding test, impaired object recognition memory, impaired choice accuracy in the visual signal detection test, and sex-selective effects on locomotor activity in adolescence (males) but not adulthood. Male, but not female, offspring showed marked increases in dopamine utilization in the striatum, evidenced by an increase in the ratio of the primary dopamine metabolite (3,4-dihydroxyphenylacetic acid) relative to dopamine levels. CONCLUSIONS: These results indicate that TPP has adverse effects that are similar in some respects to those of organophosphate pesticides, which were restricted because of their developmental neurotoxicity.


Subject(s)
Flame Retardants , Humans , Animals , Rats , Male , Flame Retardants/toxicity , Dopamine , Rats, Sprague-Dawley , Zebrafish , Organophosphates/toxicity
2.
Epigenetics Chromatin ; 15(1): 33, 2022 09 10.
Article in English | MEDLINE | ID: mdl-36085240

ABSTRACT

BACKGROUND: Cannabis legalization is expanding and men are the predominant users. We have limited knowledge about how cannabis impacts sperm and whether the effects are heritable. RESULTS: Whole genome bisulfite sequencing (WGBS) data were generated for sperm of rats exposed to: (1) cannabis extract (CE) for 28 days, then 56 days of vehicle only (~ one spermatogenic cycle); (2) vehicle for 56 days, then 28 days of CE; or (3) vehicle only. Males were then mated with drug-naïve females to produce F1 offspring from which heart, brain, and sperm tissues underwent analyses. There were 3321 nominally significant differentially methylated CpGs in F0 sperm identified via WGBS with select methylation changes validated via bisulfite pyrosequencing. Significant methylation changes validated in F0 sperm of the exposed males at the gene 2-Phosphoxylose Phosphatase 1 (Pxylp1) were also detectable in their F1 sperm but not in controls. Changes validated in exposed F0 sperm at Metastasis Suppressor 1-Like Protein (Mtss1l) were also present in F1 hippocampal and nucleus accumbens (NAc) of the exposed group compared to controls. For Mtss1l, a significant sex-specific relationship between DNA methylation and gene expression was demonstrated in the F1 NAc. Phenotypically, rats born to CSE-exposed fathers exhibited significant cardiomegaly relative to those born to control fathers. CONCLUSIONS: This is the first characterization of the effect of cannabis exposure on the entirety of the rat sperm methylome. We identified CE-associated methylation changes across the sperm methylome, some of which persisted despite a "washout" period. Select methylation changes validated via bisulfite pyrosequencing, and genes associated with methylation changes were involved in early developmental processes. Preconception CE exposure is associated with detectable changes in offspring DNA methylation that are functionally related to changes in gene expression and cardiomegaly. These results support that paternal preconception exposure to cannabis can influence offspring outcomes.


Subject(s)
Cannabis , Animals , Cardiomegaly , DNA Methylation , Female , Humans , Male , Plant Extracts , Rats , Seeds , Spermatozoa
3.
Toxicology ; 472: 153189, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35452779

ABSTRACT

Diazinon is an organophosphate pesticide that has a history of wide use. Developmental exposures to organophosphates lead to neurobehavioral changes that emerge early in life and can persist into adulthood. However, preclinical studies have generally evaluated changes through young adulthood, whereas the persistence or progression of deficits into middle age remain poorly understood. The current study evaluated the effects of maternal diazinon exposure on behavior and neurochemistry in middle age, at 1 year postpartum, comparing the results to our previous studies of outcomes at adolescence and in young adulthood (4 months of age) (Hawkey 2020). Female rats received 0, 0.5 or 1.0 mg/kg/day of diazinon via osmotic minipump throughout gestation and into the postpartum period. The offspring were tested on a battery of locomotor, affective, and cognitive tests at young adulthood and during middle age. Some of the neurobehavioral consequences of developmental DZN seen during adolescence and young adulthood faded with continued aging, whereas other neurobehavioral effects emerged with aging. At middle age, the rats showed few locomotor effects, in contrast to the locomotor hyperactivity that had been observed in adolescence. Notably, though, DZN exposure during development impaired reference memory performance in middle-aged males, an effect that had not been seen in the younger animals. Likewise, middle-aged females exposed to DZN showed deficient attentional accuracy, an effect not seen in young adults. Across adulthood, the continued potential for behavioral defects was associated with altered dopaminergic function, characterized by enhanced dopamine utilization that was regionally-selective (striatum but not frontal/parietal cortex). This study shows that the neurobehavioral impairments from maternal low dose exposure to diazinon not only persist, but may continue to evolve as animals enter middle age.


Subject(s)
Diazinon , Insecticides , Animals , Behavior, Animal , Diazinon/toxicity , Female , Male , Organophosphates/pharmacology , Organophosphorus Compounds/pharmacology , Rats
4.
Sci Rep ; 12(1): 3020, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194100

ABSTRACT

Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[131I]iodobenzoate (iso-[131I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [131I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[131I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[131I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc2-iso-[131I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[131I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[131I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gene Expression/genetics , Immunoglobulin Fragments/therapeutic use , Iodine Radioisotopes/pharmacology , Iodine Radioisotopes/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/therapeutic use , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use , Animals , Disease Models, Animal , Female , Humans , Receptor, ErbB-2/metabolism , Xenograft Model Antitumor Assays
5.
Neurotoxicology ; 81: 180-188, 2020 12.
Article in English | MEDLINE | ID: mdl-33091435

ABSTRACT

Maternal toxicant exposure during gestation can have deleterious effects on neurobehavioral development of the offspring. The potential risks engendered by paternal toxicant exposure prior to conception have been largely understudied. Recently, we found that chronic THC exposure prior to conception in male rats causes long-lasting behavioral impairment in their offspring. The current study examined the effects of chronic preconception exposure to cannabis smoke extract in Sprague-Dawley rats at two different phases in sperm development. One group received daily subcutaneous (sc) injections of THC in cannabis extract at 4 mg/kg/day for 28 days until three days prior to mating with untreated females (late exposure group). Another group received the same regimen except they underwent 56 days of drug abstinence prior to mating (early exposure group). These were compared with a control group treated with vehicle. The offspring underwent a battery of tests for behavioral function to assess motor, emotional and cognitive function. On the elevated plus maze test, the offspring of both paternal cannabis smoke extract (CSE) exposure groups had significantly more time on the open arms than control offspring, indicative of greater risk-taking behavior. No significant main effects of CSE exposure were seen on adolescent or adult locomotor activity in the figure-8 apparatus. In the novel object recognition test, there was a significantly greater drop-off in novel object preference across the session in the male, but not female offspring of the late exposure group. There was also a sex-selective effect of paternal CSE treatment in the 16-arm radial maze test of memory function. Female offspring of the late exposure group had significantly more working memory errors than control females in the first half of the 12-session training sequence. No significant effects were seen in the operant visual signal sustained detection test of attention. This study shows that there are long-lasting behavioral consequences of preconception CSE exposure through the paternal lineage in rats.


Subject(s)
Behavior, Animal/drug effects , Dronabinol/toxicity , Hallucinogens/toxicity , Paternal Exposure/adverse effects , Spermatogenesis/drug effects , Animals , Cognition/drug effects , Elevated Plus Maze Test , Emotions/drug effects , Female , Locomotion , Male , Motor Activity/drug effects , Open Field Test , Rats, Sprague-Dawley , Sex Factors
6.
Sci Rep ; 10(1): 16022, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994467

ABSTRACT

Men consume the most nicotine and cannabis products but impacts on sperm epigenetics are poorly characterized. Evidence suggests that preconception exposure to these drugs alters offspring neurodevelopment. Epigenetics may in part facilitate heritability. We therefore compared effects of exposure to tetrahydrocannabinol (THC) and nicotine on DNA methylation in rat sperm at genes involved in neurodevelopment. Reduced representation bisulfite sequencing data from sperm of rats exposed to THC via oral gavage showed that seven neurodevelopmentally active genes were significantly differentially methylated versus controls. Pyrosequencing data revealed majority overlap in differential methylation in sperm from rats exposed to THC via injection as well as those exposed to nicotine. Neurodevelopmental genes including autism candidates are vulnerable to environmental exposures and common features may mediate this vulnerability. We discovered that autism candidate genes are significantly enriched for bivalent chromatin structure, suggesting this configuration may increase vulnerability of genes in sperm to disrupted methylation.


Subject(s)
DNA Methylation/drug effects , Dronabinol/adverse effects , Gene Regulatory Networks/drug effects , Nicotine/adverse effects , Spermatozoa/chemistry , Animals , Autistic Disorder/genetics , Chromatin/chemistry , Chromatin/drug effects , Chromatin/genetics , CpG Islands/drug effects , Disease Models, Animal , Epigenesis, Genetic/drug effects , High-Throughput Nucleotide Sequencing , Male , Rats , Sequence Analysis, DNA , Spermatozoa/drug effects
7.
Epigenetics ; 15(1-2): 161-173, 2020.
Article in English | MEDLINE | ID: mdl-31451081

ABSTRACT

Parental cannabis use has been associated with adverse neurodevelopmental outcomes in offspring, but how such phenotypes are transmitted is largely unknown. Using reduced representation bisulphite sequencing (RRBS), we recently demonstrated that cannabis use is associated with widespread DNA methylation changes in human and rat sperm. Discs-Large Associated Protein 2 (DLGAP2), involved in synapse organization, neuronal signaling, and strongly implicated in autism, exhibited significant hypomethylation (p < 0.05) at 17 CpG sites in human sperm. We successfully validated the differential methylation present in DLGAP2 for nine CpG sites located in intron seven (p < 0.05) using quantitative bisulphite pyrosequencing. Intron 7 DNA methylation and DLGAP2 expression in human conceptal brain tissue were inversely correlated (p < 0.01). Adult male rats exposed to delta-9-tetrahydrocannabinol (THC) showed differential DNA methylation at Dlgap2 in sperm (p < 0.03), as did the nucleus accumbens of rats whose fathers were exposed to THC prior to conception (p < 0.05). Altogether, these results warrant further investigation into the effects of preconception cannabis use in males and the potential effects on subsequent generations.


Subject(s)
DNA Methylation , Marijuana Abuse/genetics , Nerve Tissue Proteins/genetics , Spermatozoa/metabolism , Adolescent , Adult , Animals , Autistic Disorder/genetics , Cannabinoid Receptor Agonists/pharmacology , CpG Islands , Dronabinol/pharmacology , Humans , Introns , Male , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Spermatozoa/drug effects
8.
Toxicology ; 429: 152327, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31704166

ABSTRACT

Diazinon is a widely-used organophosphate pesticide. Pulsatile exposure to diazinon during neonatal development has previously been shown cause long-term neurobehavioral impairments in rats. However, the effects of chronic low concentration exposures during perinatal development remain unclear. This experiment evaluated such effects in Sprague-Dawley rats by implanting osmotic pumps in breeder females prior to conception (N = 13-15 litters per condition) which then delivered chronic, zero order kinetic low-level infusions of 0, 114 or 228 ug/day of diazinon throughout pregnancy. One male and one female from each litter was assessed with a battery of behavioral tests that continued from four weeks of age into adulthood. Litter was used as the unit of variance for the analysis of variance test of significance, with sex as a within litter factor. Diazinon treatment condition was the between subjects factor and time or sessions were repeated measures. Chronic diazinon exposure from pre-mating until the neonatal period caused a significant (p < 0.05) increase in percent of time spent on the open arms of the elevated plus maze, an index of risk-taking behavior. Gestational and lactational diazinon exposure also caused a significant (p < 0.05) degree of hyperactivity in the Figure-8 apparatus during adolescence, specifically affecting the early part of the hour-long test session. This effect had dissipated by the time the rats reached adulthood. Diazinon exposure also caused a significant impairment in novel object recognition, a test of cognitive function. Offspring exposed to 228 ug/day diazinon (p < 0.05) showed significantly less preference for the novel vs. familiar object than controls during the first five minutes of the novel object recognition test.


Subject(s)
Behavior, Animal/drug effects , Diazinon/toxicity , Insecticides/toxicity , Prenatal Exposure Delayed Effects/physiopathology , Animals , Cognition/drug effects , Diazinon/administration & dosage , Female , Insecticides/administration & dosage , Male , Maze Learning/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects
9.
Eur J Pharmacol ; 861: 172592, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31421087

ABSTRACT

Neurobehavioral bases of tobacco addiction and nicotine reinforcement are complex, involving more than only nicotinic cholinergic or dopaminergic systems. Memantine is an NMDA glutamate antagonist used to improve cognitive function in people with Alzheimer's disease. Glutamate may be an important component of the reinforcing effects of nicotine, so memantine was evaluated as a potential smoking cessation aid. Two studies were conducted with adult female rats, one testing acute effects of memantine over a range of doses for changing nicotine self-administration and the other testing the chronic effects of memantine to reduce nicotine self-administration. Acute memantine injections slightly, but significantly, increased nicotine self-administration in a dose-related manner. In contrast, chronic memantine treatment significantly reduced nicotine self-administration. During the first day of memantine administration in the chronic study, nicotine self-administration was significantly elevated replicating the acute study. Starting in the second week of treatment there was a significant reduction of nicotine self-administration relative to controls. This was seen because memantine treatment prevented the increase in nicotine self-administration shown by controls. There even continued to be a memantine-induced lowered nicotine self-administration during the week after the cessation of memantine treatment. Memantine or other drugs affecting NMDA glutamate receptors may be useful aids to smoking cessation. Full efficacy for reducing nicotine self-administration was seen as the NMDA drug treatment is given chronically. Importantly, the effect persisted even after treatment is ended, indicating the high potential for NMDA glutamate receptors to impact nicotine addiction.


Subject(s)
Memantine/pharmacology , Nicotine/administration & dosage , Animals , Dose-Response Relationship, Drug , Female , Memantine/therapeutic use , Rats , Rats, Sprague-Dawley , Self Administration , Time Factors , Tobacco Use Disorder/drug therapy
10.
Neurotoxicol Teratol ; 74: 106808, 2019.
Article in English | MEDLINE | ID: mdl-31103693

ABSTRACT

Studies of intergenerational effects of parental chemical exposure have principally focused on maternal exposure, particularly for studies of adverse neurobehavioral consequences on the offspring. Maternal nicotine exposure has long been known to cause adverse neurobehavioral effects on the offspring. However, paternal toxicant exposure has also been found to cause neurobehavioral toxicity in their offspring. Recent work suggests that paternal nicotine exposure can have epigenetic effects, although it remains unclear whether such changes lead to neurobehavioral effects. In the current study, we investigated the effects of paternal nicotine exposure on neurobehavioral development of their offspring. Male Sprague-Dawley rats were exposed to 0 or 2 mg/kg/day nicotine (sc) for 56 consecutive days with two consecutive 2ML4 osmotic minipumps. Following treatment, these males were mated with drug-naïve female rats. Offspring of both sexes were tested in a behavioral battery to assess locomotion, emotional function and cognition. Paternal nicotine exposure did not impact offspring viability, health or growth. However, behavioral function of the offspring was significantly altered by paternal nicotine exposure. Male offspring with paternal nicotine exposure exhibited locomotor hyperactivity in the Figure-8 apparatus when tested during adolescence. When retested in adulthood and regardless of sex, offspring of the nicotine exposed father showed significantly reduced habituation of locomotor activity over the course of the session. Compared to controls, female offspring of nicotine-exposed fathers showed significantly reduced response latency in the radial arm maze test. In addition to locomotor hyperactivity, the offspring of nicotine-exposed fathers also showed significantly diminished habituation in the novel object recognition test. These results indicate that chronic paternal nicotine exposure can impact the behavior of offspring, producing locomotor hyperactivity and impaired habituation.


Subject(s)
Behavior, Animal/drug effects , Nicotine/toxicity , Paternal Exposure , Animals , Anxiety/chemically induced , Exploratory Behavior/drug effects , Female , Male , Motor Activity/drug effects , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Sex Characteristics , Spatial Memory/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...