Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Med Oral Patol Oral Cir Bucal ; 26(6): e825-e833, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34564687

ABSTRACT

BACKGROUND: The goal of this study was to evaluate hard tissue response following guided bone regeneration using commercially available bovine bone grafts and collagen membranes; bilayer collagen membrane and porcine pericardium-based membrane, by means of a non-destructive three-dimensional (3D) computerized volumetric analysis following microtomography reconstruction. MATERIAL AND METHODS: Bone regenerative properties of various bovine bone graft materials were evaluated in the Göttingen minipig model. Two standardized intraosseous defects (15mm x 8mm x 8mm) were created bilaterally of the mandible of eighteen animals (n=72 defects). Groups were nested within the same subject and randomly distributed among the sites: (i) negative control (no graft and membrane), (ii) bovine bone graft/bilayer collagen membrane (BOB) (iii) Bio-Oss® bone graft/porcine pericardium-based membrane (BOJ) and (iv) cerabone® bone graft/porcine pericardium-based membrane (CJ). Samples were harvested at 4, 8, and 12-week time points (n=6 animal/time point). Segments were scanned using computerized microtomography (µCT) and three dimensionally reconstructed utilizing volumetric reconstruction software. Statistical analyses were performed using IBM SPSS with a significance level of 5%. RESULTS: From a temporal perspective, tridimensional evaluation revealed gradual bone ingrowth with the presence of particulate bone grafts bridging the defect walls, and mandibular architecture preservation over time. Volumetric analysis demonstrated no significant difference between all groups at 4 weeks (p>0.127). At 8 and 12 weeks there was a higher percentage of new bone formation for control and CJ groups when compared to BOB and BOJ groups (p<0.039). The natural bovine bone graft group showed more potential for graft resorption over time relative to bovine bone graft, significantly different between 4 and 8 weeks (p<0.003). CONCLUSIONS: Volumetric analysis yielded a favorable mandible shape with respect to time through the beneficial balance between graft resorption/bone regenerative capacity for the natural bovine bone graft.


Subject(s)
Bone Substitutes , Animals , Cattle , Bone Regeneration , Bone Substitutes/pharmacology , Collagen , Heterografts , Mandible/diagnostic imaging , Mandible/surgery , Membranes, Artificial , Swine , Swine, Miniature
2.
Adv Dent Res ; 28(1): 28-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26927485

ABSTRACT

Primary mechanical stability, as measured by maximum insertion torque and resonance frequency analysis, is generally considered to be positively associated with successful secondary stability and implant success. Primary implant stability can be affected by several factors, including the quality and quantity of available bone, the implant design, and the surgical procedure. The use of a tapered implant design, for instance, has been shown to result in good primary stability even in clinical scenarios where primary stability is otherwise difficult to achieve with traditional cylindrical implants-for example, in soft bone and for immediate placement in extraction sockets. In this study, bone-type specific drill procedures are presented for a novel Straumann bone level tapered implant that ensure maximum insertion torque values are kept within the range of 15 to 80 Ncm. The drill procedures are tested in vitro using polyurethane foam blocks of variable density, ex vivo on explanted porcine ribs (bone type 3), and finally in vivo on porcine mandibles (bone type 1). In each test site, adapted drill procedures are found to achieve a good primary stability. These results are further translated into a finite element analysis model capable of predicting primary stability of tapered implants. In conclusion, we have assessed the biomechanical behavior of a novel taper-walled implant in combination with a bone-type specific drill procedure in both synthetic and natural bone of various types, and we have developed an in silico model for predicting primary stability upon implantation.


Subject(s)
Dental Implantation, Endosseous/instrumentation , Dental Implants , Dental Prosthesis Design , Dental Prosthesis Retention , Animals , Biomechanical Phenomena , Bone Density , Mandible/surgery , Surface Properties , Swine , Torque
3.
Adv Dent Res ; 28(1): 34-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26927486

ABSTRACT

The aim of the present preclinical in vivo study was to evaluate whether a modified "drill-only" protocol, involving slight underpreparation of the implant site, may have an effect on aspects of osseointegration of a novel bone-level tapered implant, compared with the "standard drilling" protocol involving taping and profiling of the marginal aspect of the implant socket. In each side of the edentulated and completely healed mandible of 11 minipigs, 2 tapered implants (8 mm long × 4.1 mm Ø, BLT; Institut Straumann AG, Basel, Switzerland) were installed either with the drill-only or the standard drilling protocol. Significantly lower average insertion torque values were recorded for the standard drilling protocol group (52 ± 29 Ncm) compared with the drill-only group (70 ± 27 Ncm) (t test, P ≤ 0.05); no significant difference was observed between the 2 groups regarding implant stability, by means of resonance frequency analysis (75 ± 8 vs. 75 ± 6, respectively). Half of the implants were immediately loaded and the rest were submerged, providing observation times of 8 or 4 wk, respectively. Non-decalcified histological and histomorphometric analysis of the implants with surrounding tissues showed no significant differences between the 2 drilling protocols regarding the distance from the implant platform to the first coronal bone-to-implant contact (f-BIC), the total bone-to-implant contact (BIC) as a percentage of the total implant perimeter, and the bone density in an area extending 1 mm laterally from the implant (BATA) within 2 rectangular regions of interest (ROIs) 4 mm in height, representing the coronal (parallel-walled) and apical (tapered) aspect of the implant (ROI 1 and ROI 2, respectively) in non-submerged implants. In general, marginal peri-implant bone levels were at or slightly apical to the implant platform, and large amounts of bone-to-implant contact were observed. In contrast, immediately loaded implants placed with the drill-only protocol showed statistically significantly lower BIC values (66% ± 13.7%) compared with those installed with the standard drilling protocol (74.8% ± 11.2%) (P = 0.018). In addition, although marginal bone levels were in most of the immediately loaded implants at or slightly apical to the implant platform, some of the implants installed with the drill-only protocol showed marginal bone loss and crater formation. Thus, in this model system, even slight underpreparation of the implant socket appeared to compromise osseointegration of immediately loaded bone-level tapered implants.


Subject(s)
Dental Implants , Immediate Dental Implant Loading/instrumentation , Osseointegration , Osteotomy/methods , Animals , Bone Density , Dental Prosthesis Design , Female , Swine , Swine, Miniature , Torque
4.
Osteoarthritis Cartilage ; 23(11): 1865-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26521732

ABSTRACT

PURPOSE: The cellular component of subchondral bone is thought to be responsible for aberrant bone remodeling in osteoarthritis (OA). Direct phenotypical analysis of the cellular compartment is critical to better understand the OA disease process. This study provides proof-of-principle for flow cytometry-based phenotyping of isolated subchondral trabecular bone (STB) marrow cells without prior use of cell culture techniques. METHODS: Tibial plateaus were obtained from OA patients undergoing total knee arthroplasty. Subchondral bone chips were digested with collagenase IA and single cell suspensions were directly phenotyped using flow cytometry. Cells were analyzed for the expression of alkaline phosphatase (ALP) as osteoblast/osteoprogenitor marker and monocyte/macrophage markers (CD14, CD68, HLA-DR, CD115). RESULTS: MTT staining revealed abundant viable cells in the bone marrow compartment of STB prior to digestion, which were efficiently released by collagenase. Within the CD45-negative cell fraction, approximately 20% of the cells were positive for the early osteoblast/osteoprogenitor marker ALP. Within the CD45+ hematopoietic cell fraction, the majority of cells were of monocytic origin (>80%) displaying strong surface expression of CD14. Discreet macrophage populations (CD14+/HLA-DR+/CD68+) and putative osteoclast progenitors (CD45+/HLA-DR-/CD115+) were unequivocally identified. Osteoblast, macrophage and osteoclast progenitor presence in the subchondral bone unit (SBU) was confirmed by (immuno)histochemical staining for osteocalcin, CD68 and tartrate-resistant acid phosphatase, respectively. CONCLUSIONS: Flow cytometric analysis is a valuable methodology to study the cellular compartment of STB marrow. This method provides a proof of principle that the whole resident cell population can be directly phenotypically characterized without the prior use of cell culture techniques.


Subject(s)
Bone Marrow Cells/pathology , Bone Remodeling , Flow Cytometry/methods , Osteoarthritis, Knee/pathology , Aged , Alkaline Phosphatase/metabolism , Bone Marrow Cells/metabolism , Cell Differentiation , Cells, Cultured , Female , Humans , Immunohistochemistry , Male , Osteoarthritis, Knee/metabolism , Osteoblasts/metabolism , Osteoblasts/pathology , Osteocalcin/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL