Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Magn Reson Imaging ; 110: 161-169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38641212

ABSTRACT

BACKGROUND: Diffusion weighted imaging (DWI) with optimized motion-compensated gradient waveforms reduces signal dropouts in the liver and pancreas caused by cardiovascular-associated motion, however its precision is unknown. We hypothesized that DWI with motion-compensated DW gradient waveforms would improve apparent diffusion coefficient (ADC)-repeatability and inter-reader reproducibility compared to conventional DWI in these organs. METHODS: In this IRB-approved, prospective, single center study, subjects recruited between October 2019 and March 2020 were scanned twice on a 3 T scanner, with repositioning between test and retest. Each scan included two respiratory-triggered DWI series with comparable acquisition time: 1) conventional (monopolar) 2) motion- compensated diffusion gradients. Three readers measured ADC values. One-way ANOVA, Bland-Altman analysis were used for statistical analysis. RESULTS: Eight healthy participants (4 male/4 female), with a mean age of 29 ± 4 years, underwent the liver and pancreas MRI protocol. Four patients with liver metastases (2 male/2 female) with a mean age of 58 ± 5 years underwent the liver MRI protocol. In healthy participants, motion-compensated DWI outperformed conventional DWI with mean repeatability coefficient of 0.14 × 10-3 (CI:0.12-0.17) vs. 0.31 × 10-3 (CI:0.27-0.37) mm2/s for liver, and 0.11 × 10-3 (CI:0.08-0.15) vs. 0.34 × 10-3 (CI:0.27-0.49) mm2/s for pancreas; and with mean reproducibility coefficient of 0.20 × 10-3 (CI:0.18-0.23) vs. 0.51 × 10-3 (CI:0.46-0.58) mm2/s for liver, and 0.16 × 10-3 (CI:0.13-0.20) vs. 0.42 × 10-3 (CI:0.34-0.52) mm2/s for pancreas. In patients, improved repeatability was observed for motion-compensated DWI in comparison to conventional with repeatability coefficient of 0.51 × 10- 3 mm2/s (CI:0.35-0.89) vs. 0.70 × 10-3 mm2/s (CI:0.49-1.20). CONCLUSION: Motion-compensated DWI enhances the precision of ADC measurements in the liver and pancreas compared to conventional DWI.


Subject(s)
Diffusion Magnetic Resonance Imaging , Liver , Motion , Pancreas , Humans , Male , Female , Diffusion Magnetic Resonance Imaging/methods , Pancreas/diagnostic imaging , Adult , Liver/diagnostic imaging , Reproducibility of Results , Prospective Studies , Middle Aged , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Image Interpretation, Computer-Assisted/methods
2.
J Imaging Inform Med ; 37(2): 471-488, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308070

ABSTRACT

Large language models (LLMs) have shown promise in accelerating radiology reporting by summarizing clinical findings into impressions. However, automatic impression generation for whole-body PET reports presents unique challenges and has received little attention. Our study aimed to evaluate whether LLMs can create clinically useful impressions for PET reporting. To this end, we fine-tuned twelve open-source language models on a corpus of 37,370 retrospective PET reports collected from our institution. All models were trained using the teacher-forcing algorithm, with the report findings and patient information as input and the original clinical impressions as reference. An extra input token encoded the reading physician's identity, allowing models to learn physician-specific reporting styles. To compare the performances of different models, we computed various automatic evaluation metrics and benchmarked them against physician preferences, ultimately selecting PEGASUS as the top LLM. To evaluate its clinical utility, three nuclear medicine physicians assessed the PEGASUS-generated impressions and original clinical impressions across 6 quality dimensions (3-point scales) and an overall utility score (5-point scale). Each physician reviewed 12 of their own reports and 12 reports from other physicians. When physicians assessed LLM impressions generated in their own style, 89% were considered clinically acceptable, with a mean utility score of 4.08/5. On average, physicians rated these personalized impressions as comparable in overall utility to the impressions dictated by other physicians (4.03, P = 0.41). In summary, our study demonstrated that personalized impressions generated by PEGASUS were clinically useful in most cases, highlighting its potential to expedite PET reporting by automatically drafting impressions.

3.
AJR Am J Roentgenol ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37850581

ABSTRACT

Since its introduction 35 years ago, gadolinium-enhanced MRI has fundamentally changed medical practice. While extraordinarily safe, gadolinium-based contrast agents (GBCAs) may have side effects. Four distinct safety considerations include: acute allergic-like reactions, nephrogenic systemic fibrosis (NSF), gadolinium deposition, and symptoms associated with gadolinium exposure. Acute reactions after GBCA administration are uncommon-far less than with iodinated contrast agents-and, while rare, serious reactions can occur. NSF is a rare, but serious, scleroderma-like condition occurring in patients with kidney failure after exposure to American College of Radiology (ACR) Group 1 GBCAs. Group 2 and 3 GBCAs are considered lower risk, and, through their use, NSF has largely been eliminated. Unrelated to NSF, retention of trace amounts of gadolinium in the brain and other organs has been recognized for over a decade. Deposition occurs with all agents, although linear agents appear to deposit more than macrocyclic agents. Importantly, to date, no data demonstrate any adverse biologic or clinical effects from gadolinium deposition, even with normal kidney function. This article summarizes the latest safety evidence of commercially available GBCAs with a focus on new agents, discusses updates to the ACR NSF GBCA safety classification, and describes approaches for strengthening the evidence needed for regulatory decisions.

4.
ArXiv ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37904738

ABSTRACT

Purpose: To determine if fine-tuned large language models (LLMs) can generate accurate, personalized impressions for whole-body PET reports. Materials and Methods: Twelve language models were trained on a corpus of PET reports using the teacher-forcing algorithm, with the report findings as input and the clinical impressions as reference. An extra input token encodes the reading physician's identity, allowing models to learn physician-specific reporting styles. Our corpus comprised 37,370 retrospective PET reports collected from our institution between 2010 and 2022. To identify the best LLM, 30 evaluation metrics were benchmarked against quality scores from two nuclear medicine (NM) physicians, with the most aligned metrics selecting the model for expert evaluation. In a subset of data, model-generated impressions and original clinical impressions were assessed by three NM physicians according to 6 quality dimensions (3-point scale) and an overall utility score (5-point scale). Each physician reviewed 12 of their own reports and 12 reports from other physicians. Bootstrap resampling was used for statistical analysis. Results: Of all evaluation metrics, domain-adapted BARTScore and PEGASUSScore showed the highest Spearman's ρ correlations (ρ=0.568 and 0.563) with physician preferences. Based on these metrics, the fine-tuned PEGASUS model was selected as the top LLM. When physicians reviewed PEGASUS-generated impressions in their own style, 89% were considered clinically acceptable, with a mean utility score of 4.08 out of 5. Physicians rated these personalized impressions as comparable in overall utility to the impressions dictated by other physicians (4.03, P=0.41). Conclusion: Personalized impressions generated by PEGASUS were clinically useful, highlighting its potential to expedite PET reporting.

5.
Comput Med Imaging Graph ; 107: 102227, 2023 07.
Article in English | MEDLINE | ID: mdl-37167815

ABSTRACT

Generation of computed tomography (CT) images from magnetic resonance (MR) images using deep learning methods has recently demonstrated promise in improving MR-guided radiotherapy and PET/MR imaging. PURPOSE: To investigate the performance of unsupervised training using a large number of unpaired data sets as well as the potential gain in performance after fine-tuning with supervised training using spatially registered data sets in generation of synthetic computed tomography (sCT) from magnetic resonance (MR) images. MATERIALS AND METHODS: A cycleGAN method consisting of two generators (residual U-Net) and two discriminators (patchGAN) was used for unsupervised training. Unsupervised training utilized unpaired T1-weighted MR and CT images (2061 sets for each modality). Five supervised models were then fine-tuned starting with the generator of the unsupervised model for 1, 10, 25, 50, and 100 pairs of spatially registered MR and CT images. Four supervised training models were also trained from scratch for 10, 25, 50, and 100 pairs of spatially registered MR and CT images using only the residual U-Net generator. All models were evaluated on a holdout test set of spatially registered images from 253 patients, including 30 with significant pathology. sCT images were compared against the acquired CT images using mean absolute error (MAE), Dice coefficient, and structural similarity index (SSIM). sCT images from 60 test subjects generated by the unsupervised, and most accurate of the fine-tuned and supervised models were qualitatively evaluated by a radiologist. RESULTS: While unsupervised training produced realistic-appearing sCT images, addition of even one set of registered images improved quantitative metrics. Addition of more paired data sets to the training further improved image quality, with the best results obtained using the highest number of paired data sets (n=100). Supervised training was found to be superior to unsupervised training, while fine-tuned training showed no clear benefit over supervised learning, regardless of the training sample size. CONCLUSION: Supervised learning (using either fine tuning or full supervision) leads to significantly higher quantitative accuracy in the generation of sCT from MR images. However, fine-tuned training using both a large number of unpaired image sets was generally no better than supervised learning using registered image sets alone, suggesting the importance of well registered paired data set for training compared to a large set of unpaired data.


Subject(s)
Image Processing, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed , Magnetic Resonance Spectroscopy
6.
Radiol Clin North Am ; 61(4): 713-723, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169433

ABSTRACT

Patients with gynecologic malignancies often require a multimodality imaging approach for initial staging, treatment response assessment, and surveillance. MRI imaging and PET are two well-established and widely accepted modalities in this setting. Although PET and MRI imaging are often acquired separately on two platforms (a PET/computed tomography [CT] and an MRI imaging scanner), hybrid PET/MRI scanners offer the potential for comprehensive disease assessment in one visit. Gynecologic malignancies have been one of the most successful areas for implementation of PET/MRI. This article provides an overview of the role of this platform in the care of patients with gynecologic malignancies.


Subject(s)
Genital Neoplasms, Female , Humans , Female , Genital Neoplasms, Female/diagnostic imaging , Genital Neoplasms, Female/pathology , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed , Multimodal Imaging/methods , Neoplasm Staging , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Positron Emission Tomography Computed Tomography/methods
7.
Radiographics ; 43(6): e220181, 2023 06.
Article in English | MEDLINE | ID: mdl-37227944

ABSTRACT

Quantitative imaging biomarkers of liver disease measured by using MRI and US are emerging as important clinical tools in the management of patients with chronic liver disease (CLD). Because of their high accuracy and noninvasive nature, in many cases, these techniques have replaced liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. The most commonly evaluated imaging biomarkers are surrogates for liver fibrosis, fat, and iron. MR elastography is now routinely performed to evaluate for liver fibrosis and typically combined with MRI-based liver fat and iron quantification to exclude or grade hepatic steatosis and iron overload, respectively. US elastography is also widely performed to evaluate for liver fibrosis and has the advantage of lower equipment cost and greater availability compared with those of MRI. Emerging US fat quantification methods can be performed along with US elastography. The author group, consisting of members of the Society of Abdominal Radiology (SAR) Liver Fibrosis Disease-Focused Panel (DFP), the SAR Hepatic Iron Overload DFP, and the European Society of Radiology, review the basics of liver fibrosis, fat, and iron quantification with MRI and liver fibrosis and fat quantification with US. The authors cover technical requirements, typical case display, quality control and proper measurement technique and case interpretation guidelines, pitfalls, and confounding factors. The authors aim to provide a practical guide for radiologists interpreting these examinations. © RSNA, 2023 See the invited commentary by Ronot in this issue. Quiz questions for this article are available in the supplemental material.


Subject(s)
Elasticity Imaging Techniques , Iron Overload , Liver Diseases , Humans , Iron , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathology , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Liver Diseases/pathology , Iron Overload/diagnostic imaging , Elasticity Imaging Techniques/methods , Radiologists , Biomarkers
8.
Front Chem ; 11: 1167783, 2023.
Article in English | MEDLINE | ID: mdl-37179772

ABSTRACT

Introduction: 43Sc and 44gSc are both positron-emitting radioisotopes of scandium with suitable half-lives and favorable positron energies for clinical positron emission tomography (PET) imaging. Irradiation of isotopically enriched calcium targets has higher cross sections compared to titanium targets and higher radionuclidic purity and cross sections than natural calcium targets for reaction routes possible on small cyclotrons capable of accelerating protons and deuterons. Methods: In this work, we investigate the following production routes via proton and deuteron bombardment on CaCO3 and CaO target materials: 42Ca(d,n)43Sc, 43Ca(p,n)43Sc, 43Ca(d,n)44gSc, 44Ca(p,n)44gSc, and 44Ca(p,2n)43Sc. Radiochemical isolation of the produced radioscandium was performed with extraction chromatography using branched DGA resin and apparent molar activity was measured with the chelator DOTA. The imaging performance of 43Sc and 44gSc was compared with 18F, 68Ga, and 64Cu on two clinical PET/CT scanners. Discussion: The results of this work demonstrate that proton and deuteron bombardment of isotopically enriched CaO targets produce high yield and high radionuclidic purity 43Sc and 44gSc. Laboratory capabilities, circumstances, and budgets are likely to dictate which reaction route and radioisotope of scandium is chosen.

9.
Phys Med Biol ; 68(7)2023 03 23.
Article in English | MEDLINE | ID: mdl-36854193

ABSTRACT

Objective. Model based deep learning (MBDL) has been challenging to apply to the reconstruction of 3D non-Cartesian MRI due to GPU memory demand because the entire volume is needed for data-consistency steps embedded in the model. This requirement makes holding even a single unroll in GPU memory difficult meaning memory efficient techniques used to increase unroll number like gradient checkpointing and deep equilibrium learning will not work well for high spatial resolution 3D non-Cartesian reconstructions without modification. Here we develop a memory efficient method called block-wise learning that combines gradient checkpointing with patch-wise training to overcome this obstacle and allow for fast and high-quality 3D non-Cartesian reconstructions using MBDL.Approach. Block-wise learning applied to a single unroll decomposes the input volume into smaller patches, gradient checkpoints each patch, passes each patch iteratively through a neural network regularizer, and then rebuilds the full volume from these output patches for data-consistency. This method is applied across unrolls during training. Block-wise learning significantly reduces memory requirements by tying GPU memory for a single unroll to user selected patch size instead of the full volume. This algorithm was used to train a MBDL architecture to reconstruct highly undersampled, 1.25 mm isotropic, pulmonary magnetic resonance angiography volumes with matrix sizes varying from 300-450 × 200-300 × 300-450 on a single GPU. We compared block-wise learning reconstructions against L1 wavelet compressed reconstructions and proxy ground truth images.Main results. MBDL with block-wise learning significantly improved image quality relative to L1 wavelet compressed sensing while simultaneously reducing average reconstruction time 38x.Significance. Block-wise learning allows for MBDL to be applied to high spatial resolution, 3D non-Cartesian datasets with improved image quality and significant reductions in reconstruction time relative to traditional iterative methods.


Subject(s)
Deep Learning , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Magnetic Resonance Angiography , Image Processing, Computer-Assisted/methods
10.
J Comput Assist Tomogr ; 47(1): 1-2, 2023.
Article in English | MEDLINE | ID: mdl-36668977

ABSTRACT

ABSTRACT: Radiologists and members-in-training are experiencing higher (and escalating) rates of burnout, resulting in a profound impact on the health of physicians, patients, and the community. Lately, the radiology community has demonstrated a growing awareness of this phenomenon, which has led to emphasis on practicing and promoting wellness. With a myriad of factors contributing to burnout in radiology, a multifaceted approach is pivotal for counteracting burnout and fostering overall well-being, including efforts driven at both organizational and individual levels. This article discusses perspectives from the members of the Early Career Committee at the Society for Advanced Body Imaging (SABI); it explores their beliefs and practical strategies for maintaining personal well-being.


Subject(s)
Burnout, Professional , Radiologists , Humans , Burnout, Professional/prevention & control
11.
Magn Reson Med ; 89(3): 908-921, 2023 03.
Article in English | MEDLINE | ID: mdl-36404637

ABSTRACT

PURPOSE: To evaluate feasibility and reproducibility of liver diffusion-weighted (DW) MRI using cardiac-motion-robust, blood-suppressed, reduced-distortion techniques. METHODS: DW-MRI data were acquired at 3T in an anatomically accurate liver phantom including controlled pulsatile motion, in eight healthy volunteers and four patients with known or suspected liver metastases. Standard monopolar and motion-robust (M1-nulled, and M1-optimized) DW gradient waveforms were each acquired with single-shot echo-planar imaging (ssEPI) and multishot EPI (msEPI). In the motion phantom, apparent diffusion coefficient (ADC) was measured in the motion-affected volume. In healthy volunteers, ADC was measured in the left and right liver lobes separately to evaluate ADC reproducibility between the two lobes. Image distortions were quantified using the normalized cross-correlation coefficient, with an undistorted T2-weighted reference. RESULTS: In the motion phantom, ADC mean and SD in motion-affected volumes substantially increased with increasing motion for monopolar waveforms. ADC remained stable in the presence of increasing motion when using motion-robust waveforms. M1-optimized waveforms suppressed slow flow signal present with M1-nulled waveforms. In healthy volunteers, monopolar waveforms generated significantly different ADC measurements between left and right liver lobes ( p = 0 . 0078 $$ p=0.0078 $$ , reproducibility coefficients (RPC) =  470 × 1 0 - 6 $$ 470\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for monopolar-msEPI), while M1-optimized waveforms showed more reproducible ADC values ( p = 0 . 29 $$ p=0.29 $$ , RPC = 220 × 1 0 - 6 $$ \mathrm{RPC}=220\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for M1-optimized-msEPI). In phantom and healthy volunteer studies, motion-robust acquisitions with msEPI showed significantly reduced image distortion ( p < 0 . 001 $$ p<0.001 $$ ) compared to ssEPI. Patient scans showed reduction of wormhole artifacts when combining M1-optimized waveforms with msEPI. CONCLUSION: Synergistic effects of combined M1-optimized diffusion waveforms and msEPI acquisitions enable reproducible liver DWI with motion robustness, blood signal suppression, and reduced distortion.


Subject(s)
Diffusion Magnetic Resonance Imaging , Liver Neoplasms , Humans , Diffusion Magnetic Resonance Imaging/methods , Reproducibility of Results , Motion , Liver Neoplasms/diagnostic imaging , Echo-Planar Imaging/methods
12.
Magn Reson Imaging ; 93: 108-114, 2022 11.
Article in English | MEDLINE | ID: mdl-35944809

ABSTRACT

OBJECTIVES: To prospectively compare image quality and apparent diffusion coefficient (ADC) quantification for reduced field-of-view (rFOV)- and multi-shot echo-planar imaging (msEPI)-based diffusion weighted imaging (DWI), using single-shot echo-planar-imaging (ssEPI) DWI as the reference. METHODS: Under IRB approval and after informed consent, msEPI, rFOV, and ssEPI DWI acquisitions were prospectively added to clinical prostate MRI exams at 3.0 T. Image distortion was quantitatively evaluated by root-mean-squared displacement (dr.m.s.). Histogram-based quantitative ADC parameters were compared in a sub-set of patients for proven sites of prostate cancer and matched non-cancerous prostate. Three radiologists also independently evaluated the DWI sequences for subjective image quality and distortion/artifact on a 5-point Likert scale. RESULTS: Twenty-five patients were included (15 with proven sites of cancer). Average dr.m.s. demonstrated a small but statistically significant reduction in distortion for both rFOV and msEPI relative to ssEPI. Quantitative ADC parameters for prostate tumors demonstrated no significant difference across the 3 DWI acquisitions and each acquisition demonstrated a statistically significant decrease in mean ADC for tumor compared to normal prostate. Qualitative reader assessment demonstrated favorable image quality for rFOV and msEPI, more notable for msEPI. CONCLUSIONS: rFOV and msEPI DWI techniques achieved reduction in image distortion, improvement in image quality, and maintained reproducible ADC quantification compared to the standard ssEPI.


Subject(s)
Diffusion Magnetic Resonance Imaging , Prostatic Neoplasms , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Humans , Magnetic Resonance Imaging , Male , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Reproducibility of Results
13.
Eur J Nucl Med Mol Imaging ; 49(11): 3705-3716, 2022 09.
Article in English | MEDLINE | ID: mdl-35556159

ABSTRACT

PURPOSE: The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis. METHODS: Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice. Subgroups from each cohort (n = 3-5) underwent dynamic 1 h PET/CT after intravenously injecting FAPI-46 radiolabeled with gallium-68 ([68 Ga]Ga-FAPI-46) at 7 days and 14 days following disease induction. Animals were sacrificed following imaging for ex vivo gamma counting and histologic correlation. [68 Ga]Ga-FAPI-46 uptake was quantified and reported as percent injected activity per cc (%IA/cc) or percent injected activity (%IA). Lung CT density in Hounsfield units (HU) was also correlated with histologic examinations of lung fibrosis. RESULTS: CT only detected differences in the fibrotic response at 14 days post-bleomycin administration. [68 Ga]Ga-FAPI-46 lung uptake was significantly higher in the bleomycin group than in control subjects at 7 days and 14 days. Significantly (P = 0.0012) increased [68 Ga]Ga-FAPI-46 lung uptake in the bleomycin groups at 14 days (1.01 ± 0.12%IA/cc) vs. 7 days (0.33 ± 0.09%IA/cc) at 60 min post-injection of the tracer was observed. These findings were consistent with an increase in both fibrinogenesis and FAP expression as seen in histology. CONCLUSION: CT was unable to assess disease activity in a murine model of IPF. Conversely, FAPI PET detected both the presence and activity of lung fibrogenesis, making it a promising tool for assessing early disease activity and evaluating the efficacy of therapeutic interventions in lung fibrosis patients.


Subject(s)
Idiopathic Pulmonary Fibrosis , Positron Emission Tomography Computed Tomography , Animals , Bleomycin , Gallium Radioisotopes , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Mice , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography , Quinolines
14.
J Nucl Med ; 63(12): 1956-1961, 2022 12.
Article in English | MEDLINE | ID: mdl-35450958

ABSTRACT

Current methods of staging liver fibrosis have notable limitations. We investigated the utility of PET in staging liver fibrosis by correlating liver uptake of 68Ga-labeled fibroblast activation protein inhibitor (FAPI) with histology in a human-sized swine model. Methods: Five pigs underwent baseline 68Ga-FAPI-46 (68Ga-FAPI) PET/MRI and liver biopsy, followed by liver parenchymal embolization, 8 wk of oral alcohol intake, endpoint 68Ga-FAPI PET/MRI, and necropsy. Regions of interest were drawn on baseline and endpoint PET images, and SUVmean was recorded. At the endpoint, liver sections corresponding to regions of interest were identified and cut out. Fibrosis was histologically evaluated using a modified METAVIR score for swine liver and quantitatively using collagen proportionate area (CPA). Box-and-whisker plots and linear regression were used to correlate SUVmean with METAVIR score and CPA, respectively. Results: Liver 68Ga-FAPI uptake strongly correlated with CPA (r = 0.89, P < 0.001). 68Ga-FAPI uptake was significantly and progressively higher across F2 and F3/F4 fibrosis stages, with a respective median SUVmean of 2.9 (interquartile range [IQR], 2.7-3.8) and 7.6 (IQR, 6.7-10.2) (P < 0.001). There was no significant difference between 68Ga-FAPI uptake of baseline liver and endpoint liver sections staged as F0/F1, with a respective median SUVmean of 1.7 (IQR, 1.3-2.0) and 1.7 (IQR, 1.5-1.8) (P = 0.338). Conclusion: The strong correlation between liver 68Ga-FAPI uptake and the histologic stage of liver fibrosis suggests that 68Ga-FAPI PET can play an impactful role in noninvasive staging of liver fibrosis, pending validation in patients.


Subject(s)
Gallium Radioisotopes , Liver Cirrhosis , Animals , Fibroblasts , Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Swine
15.
J Nucl Med ; 63(10): 1604-1610, 2022 10.
Article in English | MEDLINE | ID: mdl-35086896

ABSTRACT

Head motion during brain PET imaging can significantly degrade the quality of the reconstructed image, leading to reduced diagnostic value and inaccurate quantitation. A fully data-driven motion correction approach was recently demonstrated to produce highly accurate motion estimates (<1 mm) with high temporal resolution (≥1 Hz), which can then be used for a motion-corrected reconstruction. This can be applied retrospectively with no impact on the clinical image acquisition protocol. We present a reader-based evaluation and an atlas-based quantitative analysis of this motion correction approach within a clinical cohort. Methods: Clinical patient data were collected over 2019-2020 and processed retrospectively. Motion was estimated using image-based registration on reconstructions of ultrashort frames (0.6-1.8 s), after which list-mode reconstructions that were fully motion-corrected were performed. Two readers graded the motion-corrected and uncorrected reconstructions. An atlas-based quantitative analysis was performed. Paired Wilcoxon tests were used to test for significant differences in reader scores and SUVs between reconstructions. The Levene test was used to determine whether motion correction had a greater impact on quantitation in the presence of motion than when motion was low. Results: Fifty standard clinical 18F-FDG brain PET datasets (age range, 13-83 y; mean ± SD, 59 ± 20 y; 27 women) from 3 scanners were collected. The reader study showed a significantly different, diagnostically relevant improvement by motion correction when motion was present (P = 0.02) and no impact in low-motion cases. Eight percent of all datasets improved from diagnostically unacceptable to acceptable. The atlas-based analysis demonstrated a significant difference between the motion-corrected and uncorrected reconstructions in cases of high motion for 7 of 8 regions of interest (P < 0.05). Conclusion: The proposed approach to data-driven motion estimation and correction demonstrated a clinically significant impact on brain PET image reconstruction.


Subject(s)
Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Adolescent , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Middle Aged , Positron-Emission Tomography/methods , Retrospective Studies , Young Adult
16.
Front Radiol ; 2: 895088, 2022.
Article in English | MEDLINE | ID: mdl-37492655

ABSTRACT

The gut microbiome profoundly influences brain structure and function. The gut microbiome is hypothesized to play a key role in the etiopathogenesis of neuropsychiatric and neurodegenerative illness; however, the contribution of an intact gut microbiome to quantitative neuroimaging parameters of brain microstructure and function remains unknown. Herein, we report the broad and significant influence of a functional gut microbiome on commonly employed neuroimaging measures of diffusion tensor imaging (DTI), neurite orientation dispersion and density (NODDI) imaging, and SV2A 18F-SynVesT-1 synaptic density PET imaging when compared to germ-free animals. In this pilot study, we demonstrate that mice, in the presence of a functional gut microbiome, possess higher neurite density and orientation dispersion and decreased synaptic density when compared to age- and sex-matched germ-free mice. Our results reveal the region-specific structural influences and synaptic changes in the brain arising from the presence of intestinal microbiota. Further, our study highlights important considerations for the development of quantitative neuroimaging biomarkers for precision imaging in neurologic and psychiatric illness.

17.
Med Phys ; 49(4): 2774-2793, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34554579

ABSTRACT

Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion-weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal-to-noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.


Subject(s)
Abdomen , Diffusion Magnetic Resonance Imaging , Abdomen/diagnostic imaging , Artifacts , Diffusion Magnetic Resonance Imaging/methods , Humans , Male , Pelvis/diagnostic imaging , Reproducibility of Results
18.
Abdom Radiol (NY) ; 47(9): 3189-3204, 2022 09.
Article in English | MEDLINE | ID: mdl-34687323

ABSTRACT

Positron emission tomography/magnetic resonance imaging (PET/MR) is used in the pre-treatment and surveillance settings to evaluate women with gynecologic malignancies, including uterine, cervical, vaginal and vulvar cancers. PET/MR combines the excellent spatial and contrast resolution of MR imaging for gynecologic tissues, with the functional metabolic information of PET, to aid in a more accurate assessment of local disease extent and distant metastatic disease. In this review, the optimal protocol and utility of whole-body PET/MR imaging in patients with gynecologic malignancies will be discussed, with an emphasis on the advantages of PET/MR over PET/CT and how to differentiate normal or benign gynecologic tissues from cancer in the pelvis.


Subject(s)
Genital Neoplasms, Female , Positron Emission Tomography Computed Tomography , Female , Fluorodeoxyglucose F18 , Genital Neoplasms, Female/diagnostic imaging , Genital Neoplasms, Female/pathology , Humans , Magnetic Resonance Imaging/methods , Pelvis/pathology , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals
19.
J Comput Assist Tomogr ; 45(4): 637-642, 2021.
Article in English | MEDLINE | ID: mdl-34176877

ABSTRACT

OBJECTIVE: To demonstrate the utility of deep learning enhancement (DLE) to achieve diagnostic quality low-dose positron emission tomography (PET)/magnetic resonance (MR) imaging. METHODS: Twenty subjects with known Crohn disease underwent simultaneous PET/MR imaging after intravenous administration of approximately 185 MBq of 18F-fluorodeoxyglucose (FDG). Five image sets were generated: (1) standard-of-care (reference), (2) low-dose (ie, using 20% of PET counts), (3) DLE-enhanced low-dose using PET data as input, (4) DLE-enhanced low-dose using PET and MR data as input, and (5) DLE-enhanced using no PET data input. Image sets were evaluated by both quantitative metrics and qualitatively by expert readers. RESULTS: Although low-dose images (series 2) and images with no PET data input (series 5) were nondiagnostic, DLE of the low-dose images (series 3 and 4) achieved diagnostic quality images that scored more favorably than reference (series 1), both qualitatively and quantitatively. CONCLUSIONS: Deep learning enhancement has the potential to enable a 90% reduction of radiotracer while achieving diagnostic quality images.


Subject(s)
Deep Learning , Fluorodeoxyglucose F18 , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals , Adult , Aged , Female , Humans , Male , Middle Aged , Multimodal Imaging/methods , Young Adult
20.
Semin Radiat Oncol ; 31(3): 186-199, 2021 07.
Article in English | MEDLINE | ID: mdl-34090645

ABSTRACT

Successful treatment of oligometastatic disease (OMD) is facilitated through timely detection and localization of disease, both at the time of initial diagnosis (synchronous OMD) and following the initial therapy (metachronous OMD). Hence, imaging plays an indispensable role in management of patients with OMD. However, the challenges and complexities of OMD management are also reflected in the imaging of this entity. While innovations and advances in imaging technology have made a tremendous impact in disease detection and management, there remain substantial and unaddressed challenges for earlier and more accurate establishment of OMD state. This review will provide an overview of the available imaging modalities and their inherent strengths and weaknesses, with a focus on their role and potential in detection and evaluation of OMD in different organ systems. Furthermore, we will review the role of imaging in evaluation of OMD for malignancies of various primary organs, such as the lung, prostate, colon/rectum, breast, kidney, as well as neuroendocrine tumors and gynecologic malignancies. We aim to provide a practical overview about the utilization of imaging for clinicians who play a role in the care of those with, or at risk for OMD.


Subject(s)
Diagnostic Imaging , Neoplasms , Diagnostic Imaging/methods , Female , Humans , Male , Neoplasms/therapy , Prostate/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...