Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687270

ABSTRACT

Reactive oxygen species (ROS) are excited or partially reduced forms of atmospheric oxygen, which are continuously produced during aerobic metabolism like many physiochemical processes operating throughout seed life. Previously, it was believed that ROS are merely cytotoxic molecules, however, now it has been established that they perform numerous beneficial functions in plants including many critical roles in seed physiology. ROS facilitate seed germination via cell wall loosening, endosperm weakening, signaling, and decreasing abscisic acid (ABA) levels. Most of the existing knowledge about ROS homeostasis and functions is based on the seeds of common plants or model ones. There is little information about the role of ROS in the germination process of halophyte seeds. There are several definitions for halophytic plants, however, we believed "halophytes are plants that can grow in very saline environment and complete their life cycle by adopting various phenological, morphological and physiological mechanisms at canopy, plant, organelle and molecular scales". Furthermore, mechanisms underlying ROS functions such as downstream targets, cross-talk with other molecules, and alternative routes are still obscure. The primary objective of this review is to decipher the mechanisms of ROS homeostasis in halophytes and dry seeds, as well as ROS flux in germinating seeds of halophytes.

2.
Environ Res ; 219: 114954, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36529322

ABSTRACT

This study was carried out to evaluate the forage quantity and quality of several halophyte species grown in arid-saline environments. After identifying 44 halophytic species in the region and considering the potential of quantitative and qualitative forage production, 13 species from four families, i.e. Amaranthaceae, Asteraceae, Leguminosae and Convolvulaceae, and eight genera were selected for further evaluation. These species differed significantly in terms of both forage quantity, measured in terms of fresh (FW) and dry weight (DW), and forage quality assessed in terms of tissue water content (TWC), ash, nitrogen content (N), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), dry matter digestibility and metabolizable energy (ME). The highest fresh and dry weights were obtained from Suaeda ferticosa (1006.3 g and 306.3 g, respectively) and Noaea mucronata (909.3 g and 309 g, respectively). However, based on forage quality characteristics, Alhagi maurorum, Bassia scoparia, Noaea mucronata, Halostachys belangriana and Cressa cretica showed the best forage potential. Values of ash, CP, ADF, NDF and ME measured in the halophytes species ranged between 7.9% and 33.2%, 6.2% and 15.8%, 30.0% and 50.3%, 33.2% and 56.4%, 5.6 and 8.7 MJ kg-1, respectively. The forage quality of the evaluated halophytic plants was influenced by unfavorable environmental conditions such as high soil salinity and low rainfall, however, these species can be considered as new sources of forage. Nevertheless, further studies are needed to improve the quality of such halophytic species by reducing the ash content and increasing the ME.


Subject(s)
Dietary Fiber , Salt-Tolerant Plants , Humans , Salt-Tolerant Plants/metabolism , Dietary Fiber/metabolism , Animal Feed/analysis , Digestion , Detergents
3.
Environ Sci Pollut Res Int ; 29(31): 47800-47809, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35190989

ABSTRACT

Two field experiments were conducted to evaluate six Salicornia species (Salicornia bigelovii Torr., S. europaea L., S. persica Gorgan ecotype, S. persica Urmia ecotype, S. sinus persica Bushehr ecotype, and S. persica Central Plateau ecotype) at different planting dates and densities under irrigation with Persian Gulf water. Evaluated planting dates were 14 November and 18 December 2016 and 16 January, 8 February, 8 March, and 28 March 2017. Examined planting densities included 13, 20, and 40 plant m-2. Only S. bigelovii and S. europaea produced measurable yield in all planting dates. The highest dry weight (651.1 gm-2) was obtained in S. sinus persica (Bu) planted on 8 February. Dry weight of S. bigelovii, S. europaea, S. sinus persica Bushehr, S. persica Central Plateau, S. persica Gorgan, and S. persica Urmia planted on 8 March were 174.2, 220.7, 542.5, 240.9, 158.0, and 147.5 g m-2, respectively. The ash contents of S. bigelovii, S. europaea, S. sinus persica Bushehr, S. persica Central Plateau, S. persica Gorgan, and S. persica Urmia were 46.3%, 45.0%, 49.6%, 49.6%, 50.0%, and 53.1%, respectively. Sodium and chloride contents of different Salicornia species varied from 13-15% and 16-17%, respectively. The oilseed content of S. bigelovii and S. sinus persica Bushehr was about 24.0% for both species. The highest and lowest dry weight, from the second experiment, were for S. sinus persica Bushehr and S. persica Central Plateau, respectively, in all planting density. The highest dry weight equal to 1336.2 gm-2 was obtained for S. sinus persica Bushehr in 40 plant m-2 density. Under such conditions, forage production potential of Salicornia is more achievable rather than seed production. Nevertheless, high ash content is a serious constraint to direct consumption by livestock; therefore, determining the nutritional value of Salicornia fodder requires further evaluations.


Subject(s)
Chenopodiaceae , Feasibility Studies , Salt-Tolerant Plants , Seawater , Sodium
4.
Article in English | MEDLINE | ID: mdl-35162599

ABSTRACT

Although the effects of salicylic acid (SA) on increasing plant growth in saline conditions have been well known, the mechanisms of induction of salinity tolerance, especially in quinoa (Chenopodium quinoa Willd.), are not fully understood. In the present work, two quinoa genotypes (Titicaca and Giza1) were treated with different SA concentrations (0, 0.75, and 1.5 mM) under varied irrigation water salinities (0, 7, 14, and 21 dS m-1). Salinity decreased shoot and root growth, potassium (K+) concentration, and potassium to sodium ratio (K/Na) and increased sodium (Na+) and chlorine (Cl-) concentrations in both cultivars. Calcium (Ca2+) and magnesium (Mg2+) concentrations increased in 7 dS m-1 but decreased in higher salinities. The growth and salinity tolerance of Giza1 were higher, while the growth of Giza1 increased and of Titicaca decreased in high salinity. Salicylic acid at 0.75-mM concentration increased shoot and root growth and improved the ions concentration in favor of the plant, while the 1.5-mM concentration either had no significant effect or had a negative impact. The ions distribution estimated by K/Na selectivity and storage factor (SF) indicated quinoa accumulated more ions in roots under saline conditions. Salicylic acid increased NaSF, ClSF, and MgSF and decreased KSF and CaSF, meaning less Na+, Cl-, and Mg2+ and more K+ and Ca2+ transferred to shoots in SA-treated plants. Importantly, Giza1, as the more tolerant cultivar, had higher NaSF and ClSF and lower KSF, CaSF, and MgSF. In general, the concentrations of ions in roots were higher than in shoots. The results indicated more ions accumulation in the root could be one of the most important mechanisms of salinity tolerance in quinoa, and the more tolerant cultivar (Giza1) transferred less Na+ and Cl- and more K+ and Ca2+ and Mg2+ to the shoot.


Subject(s)
Chenopodium quinoa , Salt Tolerance , Chenopodium quinoa/genetics , Ions , Plant Roots , Salicylic Acid , Sodium Chloride/pharmacology
5.
J Nanobiotechnology ; 20(1): 19, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983548

ABSTRACT

The worldwide agricultural enterprise is facing immense pressure to intensify to feed the world's increasing population while the resources are dwindling. Fertilizers which are deemed as indispensable inputs for food, fodder, and fuel production now also represent the dark side of the intensive food production system. With most crop production systems focused on increasing the quantity of produce, indiscriminate use of fertilizers has created havoc for the environment and damaged the fiber of the biogeosphere. Deteriorated nutritional quality of food and contribution to impaired ecosystem services are the major limiting factors in the further growth of the fertilizer sector. Nanotechnology in agriculture has come up as a better and seemingly sustainable solution to meet production targets as well as maintaining the environmental quality by use of less quantity of raw materials and active ingredients, increased nutrient use-efficiency by plants, and decreased environmental losses of nutrients. However, the use of nanofertilizers has so far been limited largely to controlled environments of laboratories, greenhouses, and institutional research experiments; production and availability on large scale are still lagging yet catching up fast. Despite perceivable advantages, the use of nanofertilizers is many times debated for adoption at a large scale. The scenario is gradually changing, worldwide, towards the use of nanofertilizers, especially macronutrients like nitrogen (e.g. market release of nano-urea to replace conventional urea in South Asia), to arrest environmental degradation and uphold vital ecosystem services which are in critical condition. This review offers a discussion on the purpose with which the nanofertilizers took shape, the benefits which can be achieved, and the challenges which nanofertilizers face for further development and real-world use, substantiated with the significant pieces of scientific evidence available so far.


Subject(s)
Agriculture/methods , Ecosystem , Fertilizers , Nanoparticles , Nanotechnology/methods , Crops, Agricultural
6.
Environ Res ; 203: 111853, 2022 01.
Article in English | MEDLINE | ID: mdl-34370989

ABSTRACT

In the current study the possibility of saffron (Crocus sativus L.) cultivating using semi-saline water was investigated at different planting dates. The salinity of irrigation water and soil were 2.9 and 5.8 dS m-1, respectively. The results showed that saffron had an acceptable potential for cultivation using semi-saline water in saline soils. The early planting dates went through the developmental stages faster, meaning saffron corms sown in early October sprouted earlier, flowers appeared faster and fully flowering occurred earlier. Nevertheless, plant senescence was the same in all planting dates. The highest percentage of corms sprouting and flowering were obtained in the early October planting dates in both years, which were matched with canopy temperature distribution. The highest flowers weight as well as stigma fresh and dry weight were obtained on the 13 October planting date within the 3 years study reaching the maximum values during the third year. Electrolyte leakage was higher in the last planting date, while photosynthesis pigments were more in early to mid-October planting dates. These effects might be related to damage of freezing temperature to physiological processes. Shoot dry weight and water productivity were the highest in early October planting dates. The shoot biomass on October 13 planting date was enough to be considered as a new forage source in semi-saline conditions. It seems that cultivation of saffron with semi-saline water is possible by considering a proper planting date, adequate leaching requirement and accurate irrigation management.


Subject(s)
Crocus , Feasibility Studies , Flowers , Plant Senescence , Saline Waters
7.
Environ Res ; 198: 111228, 2021 07.
Article in English | MEDLINE | ID: mdl-33971127

ABSTRACT

COVID-19 (coronavirus disease) is a global pandemic that started in China in 2019 and has negatively affected all economic sectors of the world, including agriculture. However, according to estimates in different countries, agriculture has suffered less than other sectors such as construction, industry and tourism, so agricultural development can be a good option to compensate for the economic damage caused to other sectors. The quality of available water and soil resources for agricultural development is not only limited, but is also decreasing incrementally, so the use of saline and unconventional soil and water resources is inevitable. Biosaline agriculture or haloculture is a system in which highly saline water and soil resources are used sustainably for the economic production of agricultural crops. It seems that in the current situation of the world (with COVID-19's impact on agriculture on the one hand and the quantitative and qualitative decline of freshwater and soil on the other), haloculture with a re-reading of territorial capabilities has good potential to provide a part of human food supply. In this review article, the potential of haloculture to offset the adverse impacts of the pandemic is analyzed from five perspectives: increasing the area under cultivation, using unconventional water, stabilizing dust centers, increasing the body's immune resistance, and reducing losses in agribusiness due to the coronavirus. Overall, haloculture is an essential system, which COVID-19 has accelerated in the agricultural sector.


Subject(s)
COVID-19 , Pandemics , Agriculture , China , Conservation of Natural Resources , Humans , SARS-CoV-2
8.
Physiol Plant ; 170(1): 46-59, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32246464

ABSTRACT

Studying the drought-responsive transcriptome is of high interest as it can serve as a blueprint for stress adaptation strategies. Despite extensive studies in this area, there are still many details to be uncovered, such as the importance of each gene involved in the stress response as well as the relationship between these genes and the physiochemical processes governing stress tolerance. This study was designed to address such important details and to gain insights into molecular responses of barley (Hordeum vulgare L.) to drought stress. To that, we combined RNA-seq data analysis with field and greenhouse drought experiments in a systems biology approach. RNA-sequence analysis identified a total of 665 differentially expressed genes (DEGs) belonging to diverse functional categories. A gene network was derived from the DEGs, which comprised of a total of 131 nodes and 257 edges. Gene network topology analysis highlighted two programmed cell death (PCD) modulating genes, MC1 (metacaspase 1) and TSN1 (Tudor-SN 1), as important (hub) genes in the predicted network. Based on the field trial, a drought-tolerant and a drought-susceptible barley genotype was identified from eight tested cultivars. Identified genotypes exhibited different physiochemical characteristics, including proline content, chlorophyll concentration, percentage of electrolyte leakage and malondialdehyde content as well as expression profiles of MC1 and TSN1 genes. Machine learning and correspondence analysis revealed a significant relationship between drought tolerance and measured characteristics in the context of PCD. Our study provides new insights which bridge barley drought tolerance to PCD through MC1 and TSN1 pathway.


Subject(s)
Droughts , Hordeum/genetics , Apoptosis , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...