Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 5(12): e1000684, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19997503

ABSTRACT

Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (T4SS) into host cells is a major risk factor for severe gastric diseases, including gastric cancer. However, the mechanism of translocation and the requirements from the host cell for that event are not well understood. The T4SS consists of inner- and outer membrane-spanning Cag protein complexes and a surface-located pilus. Previously an arginine-glycine-aspartate (RGD)-dependent typical integrin/ligand type interaction of CagL with alpha5beta1 integrin was reported to be essential for CagA translocation. Here we report a specific binding of the T4SS-pilus-associated components CagY and the effector protein CagA to the host cell beta1 Integrin receptor. Surface plasmon resonance measurements revealed that CagA binding to alpha5beta1 integrin is rather strong (dissociation constant, K(D) of 0.15 nM), in comparison to the reported RGD-dependent integrin/fibronectin interaction (K(D) of 15 nM). For CagA translocation the extracellular part of the beta1 integrin subunit is necessary, but not its cytoplasmic domain, nor downstream signalling via integrin-linked kinase. A set of beta1 integrin-specific monoclonal antibodies directed against various defined beta1 integrin epitopes, such as the PSI, the I-like, the EGF or the beta-tail domain, were unable to interfere with CagA translocation. However, a specific antibody (9EG7), which stabilises the open active conformation of beta1 integrin heterodimers, efficiently blocked CagA translocation. Our data support a novel model in which the cag-T4SS exploits the beta1 integrin receptor by an RGD-independent interaction that involves a conformational switch from the open (extended) to the closed (bent) conformation, to initiate effector protein translocation.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Helicobacter pylori/physiology , Integrin beta1/metabolism , Oligopeptides/metabolism , Bacterial Proteins/genetics , Cell Line, Tumor , Fimbriae, Bacterial , HeLa Cells , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Humans , Models, Biological , Phosphorylation , Protein Transport , Secretory Pathway , Statistics, Nonparametric
2.
Mol Microbiol ; 73(2): 267-77, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19555459

ABSTRACT

Quorum sensing (QS) refers to the ability of bacterial populations to read out the local environment for cell density and to collectively activate gene expression. Vibrio harveyi, one of the best characterized model organisms in QS, was used to address the question how single cells behave within a QS-activated community in a homogeneous environment. Analysis of the QS-regulated bioluminescence of a wild type strain revealed that even at high cell densities only 69% of the cells of the population produced bioluminescence, 25% remained dark and 6% were dead. Moreover, light intensities greatly varied from cell to cell at high population density. Addition of autoinducer to a bright liquid culture of V. harveyi increased the percentage of luminescent cells up to 98%, suggesting that V. harveyi produces and/or keeps the autoinducers at non-saturating concentrations. In contrast, all living cells of a constitutive QS-active mutant (DeltaluxO) produced light. We also found that QS affects biofilm formation in V. harveyi. Our data provide first evidence that a heterogeneous population produces more biofilm than a homogeneous one. It is suggested that even a QS-committed population of V. harveyi takes advantage of heterogeneity, which extends the current view of QS-regulated uniformity.


Subject(s)
Luminescence , Quorum Sensing , Vibrio/physiology , Bacterial Proteins/genetics , Biofilms , Gene Expression Regulation, Bacterial , Homoserine/analogs & derivatives , Homoserine/physiology , Lactones , Repressor Proteins/genetics , Vibrio/genetics
3.
J Mol Biol ; 386(1): 134-48, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19101563

ABSTRACT

The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K(+)-transport system KdpFABC in response to K(+) limitation or salt stress. Under K(+) limiting conditions the Kdp system restores the intracellular K(+) concentration, while in response to salt stress K(+) is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K(+), so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD-->KdpE-->DNA) resulting in phosphorylation of KdpE at a K(+) concentration that would otherwise almost prevent phosphorylation. In agreement, in a DeltauspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K(+) limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE~P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Heat-Shock Proteins/metabolism , Potassium/metabolism , Protein Kinases/metabolism , Signal Transduction , Sodium Chloride/metabolism , Trans-Activators/metabolism , Binding Sites , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Heat-Shock Proteins/genetics , Models, Biological , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Surface Plasmon Resonance
4.
J Biol Chem ; 278(44): 42942-9, 2003 Oct 31.
Article in English | MEDLINE | ID: mdl-12923181

ABSTRACT

The Na+/proline transporter PutP of Escherichia coli is a member of a large family of Na+/substrate symporters. Previous work on PutP suggests an involvement of the region ranging from Asp-55 to Gly-58 in binding of Na+ and/or proline (Pirch, T., Quick, M., Nietschke, M., Langkamp, M., Jung, H. (2002) J. Biol. Chem. 277, 8790-8796). In this study, a complete Cys scanning mutagenesis of transmembrane domain II (TM II) of PutP was performed to further elucidate the role of the TM in the transport process. Strong defects of PutP function were observed upon substitution of Ala-48, Ala-53, Trp-59, and Gly-63 by Cys in addition to the previously characterized residues Asp-55, Ser-57, and Gly-58. However, except for Asp-55 none of these residues proved essential for function. The activity of eight mutants was sensitive to N-ethylmaleimide inhibition with the sensitive positions clustering predominantly on a hydrophilic face in the cytoplasmic half of TM II. The same face was also highly accessible to the bulky sulfhydryl reagent fluorescein 5-maleimide in randomly oriented membrane vesicles, suggesting an unrestricted accessibility of the corresponding amino acid positions via an aqueous pathway. Na+ stimulated the reactivity of Cys toward fluorescein 5-maleimide at two positions while proline inhibited reaction of the sulfhydryl group at nine positions. Taken together, the results demonstrate that TM II of PutP is of particular functional importance. It is proposed that hydrophilic residues in the cytoplasmic half of TM II participate in the formation of an aqueous cavity in the membrane that allows Na+ and/or proline binding to residues located in the middle of the TM (e.g. Asp-55 and Ser-57). In addition, the data indicate that TM II participates in Na+- and proline-induced conformational alterations.


Subject(s)
Amino Acid Transport Systems, Neutral/chemistry , Cell Membrane/metabolism , Escherichia coli/metabolism , Amino Acid Sequence , Amino Acid Transport Systems, Neutral/metabolism , Biological Transport , Cysteine/chemistry , Cytoplasm/metabolism , Electrophoresis, Polyacrylamide Gel , Ethylmaleimide/pharmacology , Fluoresceins/pharmacology , Ligands , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Plasmids/metabolism , Proline/chemistry , Protein Conformation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Sodium/metabolism
5.
J Biol Chem ; 277(11): 8790-6, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11756453

ABSTRACT

To elucidate the functional importance of transmembrane domain II in the Na(+)/proline transporter (PutP) of Escherichia coli we analyzed the effect of replacing Ser-54 through Gly-58. Substitution of Asp-55 or Met-56 dramatically reduces the apparent affinity for Na(+) and Li(+) in a cation-dependent manner. Conversely, Cys in place of Gly-58 significantly reduces only the apparent proline affinity while substitution of Ser-57 results in a dramatic reduction of the apparent proline and cation affinities. Interestingly, upon increasing the proline concentration the apparent Na(+) affinity of Ser-57 replacement mutants converges toward the wild-type value, indicating a close cooperativity between cation and substrate site(s). This notion is supported by the fact that Na(+)-stimulated site-specific fluorescence labeling of a single Cys at position 57 is completely reversed by the addition of proline. Similar results are obtained upon labeling of a Cys at position 54 or 58. Taken together, these results indicate that Asp-55 and Met-56 are located at or close to the ion-binding site while Ser-54, Ser-57, and Gly-58 may be close to the proline translocation pathway. In addition, the data prod at an involvement of the latter residues in ligand-induced conformational dynamics that are crucial for cation-coupled transport.


Subject(s)
Amino Acid Transport Systems, Neutral/chemistry , Escherichia coli/metabolism , Sodium/metabolism , Amino Acid Transport Systems, Neutral/metabolism , Binding Sites , Cysteine , Mutagenesis, Site-Directed , Proline/metabolism , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...