Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
JAC Antimicrob Resist ; 6(1): dlae026, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38410248

ABSTRACT

Objectives: To explore effectiveness and sustainability of guideline adherence and antibiotic consumption after establishing treatment guidelines and initiating antimicrobial stewardship (AMS) ward rounds in a university hospital emergency department (ED). Methods: Data were gathered retrospectively from 2017 to 2021 in the LMU University Hospital in Munich, Germany. Four time periods were compared: P1 (pre-intervention period); P2 (distribution of guideline pocket cards); P3 (reassessment after 3 years); and P4 (refresher of guideline pocket cards and additional daily AMS ward rounds for different medical disciplines). Primary outcome was adherence to guideline pocket cards for community-acquired pneumonia, cystitis, pyelonephritis and COVID-19-associated bacterial pneumonia. Secondary outcomes were reduction in antibiotic consumption and adherence to AMS specialist recommendations. Results: The study included 1324 patients. Guideline adherence increased in P2 for each of the infectious diseases entities. After 3 years (P3), guideline adherence decreased again, but was mostly on a higher level than in P1. AMS ward rounds resulted in an additional increase in guideline adherence (P1/P2: 47% versus 58.6%, P = 0.005; P2/P3: 58.6% versus 57.3%, P = 0.750; P3/P4: 57.3% versus 72.5%, P < 0.001). Adherence increased significantly, not only during workdays but also on weekends/nightshifts. Adherence to AMS specialist recommendations was excellent (91.3%). We observed an increase in use of narrow-spectrum antibiotics and a decrease in the application of fluoroquinolones and cephalosporins. Conclusions: Establishing treatment guidelines in the ED is effective. However, positive effects can be diminished over time. Daily AMS ward rounds are useful, not only to restore but to further increase guideline adherence significantly.

2.
Blood ; 143(15): 1539-1550, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38142422

ABSTRACT

ABSTRACT: JAK2 V617F (JAK2VF) clonal hematopoiesis (CH) has been associated with atherothrombotic cardiovascular disease (CVD). We assessed the impact of Jak2VF CH on arterial thrombosis and explored the underlying mechanisms. A meta-analysis of 3 large cohort studies confirmed the association of JAK2VF with CVD and with platelet counts and adjusted mean platelet volume (MPV). In mice, 20% or 1.5% Jak2VF CH accelerated arterial thrombosis and increased platelet activation. Megakaryocytes in Jak2VF CH showed elevated proplatelet formation and release, increasing prothrombogenic reticulated platelet counts. Gp1ba-Cre-mediated expression of Jak2VF in platelets (VFGp1ba) increased platelet counts to a similar level as in 20% Jak2VF CH mice while having no effect on leukocyte counts. Like Jak2VF CH mice, VFGp1ba mice showed enhanced platelet activation and accelerated arterial thrombosis. In Jak2VF CH, both Jak2VF and wild-type (WT) platelets showed increased activation, suggesting cross talk between mutant and WT platelets. Jak2VF platelets showed twofold to threefold upregulation of COX-1 and COX-2, particularly in young platelets, with elevated cPLA2 activation and thromboxane A2 production. Compared with controls, conditioned media from activated Jak2VF platelets induced greater activation of WT platelets that was reversed by a thromboxane receptor antagonist. Low-dose aspirin ameliorated carotid artery thrombosis in VFGp1ba and Jak2VF CH mice but not in WT control mice. This study shows accelerated arterial thrombosis and platelet activation in Jak2VF CH with a major role of increased reticulated Jak2VF platelets, which mediate thromboxane cross talk with WT platelets and suggests a potential beneficial effect of aspirin in JAK2VF CH.


Subject(s)
Clonal Hematopoiesis , Thrombosis , Animals , Humans , Mice , Aspirin/pharmacology , Aspirin/therapeutic use , Blood Platelets/metabolism , Mice, Knockout , Platelet Activation , Thrombosis/genetics , Thrombosis/metabolism
3.
Front Immunol ; 14: 1151926, 2023.
Article in English | MEDLINE | ID: mdl-37090695

ABSTRACT

Thrombosis is a frequent cause of cardiovascular mortality and hospitalization. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. In recent years the pathophysiological understanding of thrombus formation has significantly advanced and inflammation has become a crucial element. Neutrophils as most frequent immune cells in the blood and their released mediators play a key role herein. Neutrophil-derived cathelicidin next to its strong antimicrobial properties has also shown to modulates thrombosis and thus presents a potential therapeutic target. In this article we review direct and indirect (immune- and endothelial cell-mediated) effects of cathelicidin on platelets and the coagulation system. Further we discuss its implications for large vessel thrombosis and consecutive thromboinflammation as well as immunothrombosis in sepsis and COVID-19 and give an outlook for potential therapeutic prospects.


Subject(s)
COVID-19 , Thrombosis , Humans , Thrombosis/drug therapy , Thrombosis/etiology , Thromboinflammation , Inflammation/drug therapy , Cathelicidins
4.
Immunity ; 55(12): 2285-2299.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36272416

ABSTRACT

Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events.


Subject(s)
Cardiovascular Diseases , Myocardial Infarction , Thrombosis , Humans , Megakaryocytes , Thrombopoiesis , Neutrophils , Blood Platelets/physiology
6.
Haematologica ; 107(7): 1669-1680, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34525794

ABSTRACT

Visualizing cell behavior and effector function on a single cell level has been crucial for understanding key aspects of mammalian biology. Due to their small size, large number and rapid recruitment into thrombi, there is a lack of data on fate and behavior of individual platelets in thrombosis and hemostasis. Here we report the use of platelet lineage restricted multi-color reporter mouse strains to delineate platelet function on a single cell level. We show that genetic labeling allows for single platelet and megakaryocyte (MK) tracking and morphological analysis in vivo and in vitro, while not affecting lineage functions. Using Cre-driven Confetti expression, we provide insights into temporal gene expression patterns as well as spatial clustering of MK in the bone marrow. In the vasculature, shape analysis of activated platelets recruited to thrombi identifies ubiquitous filopodia formation with no evidence of lamellipodia formation. Single cell tracking in complex thrombi reveals prominent myosin-dependent motility of platelets and highlights thrombus formation as a highly dynamic process amenable to modification and intervention of the acto-myosin cytoskeleton. Platelet function assays combining flow cytrometry, as well as in vivo, ex vivo and in vitro imaging show unaltered platelet functions of multicolor reporter mice compared to wild-type controls. In conclusion, platelet lineage multicolor reporter mice prove useful in furthering our understanding of platelet and MK biology on a single cell level.


Subject(s)
Megakaryocytes , Thrombosis , Animals , Blood Platelets/metabolism , Bone Marrow/metabolism , Hemostasis , Mammals , Megakaryocytes/metabolism , Mice , Thrombosis/metabolism
7.
Nature ; 592(7853): 296-301, 2021 04.
Article in English | MEDLINE | ID: mdl-33731931

ABSTRACT

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Subject(s)
Atherosclerosis/pathology , Clonal Hematopoiesis , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Animals , Antibodies/immunology , Antibodies/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Bone Marrow/metabolism , Caspase 1/metabolism , Caspases, Initiator/metabolism , Disease Models, Animal , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins/metabolism , Pyroptosis , RNA-Seq , Single-Cell Analysis
8.
J Nucl Cardiol ; 28(6): 2965-2975, 2021 12.
Article in English | MEDLINE | ID: mdl-32676914

ABSTRACT

BACKGROUND: The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to be a possible imaging and therapeutic target after myocardial infarction (MI). The murine-based and mouse-specific 68Ga-mCXCL12 PET tracer could be suitable for serial in vivo quantification of cardiac CXCR4 expression in a murine model of MI. METHODS AND RESULTS: At days 1-6 after MI, mice were intravenously injected with 68Ga-mCXCL12. Autoradiography was performed and the infarct-to-remote ratio (I/R) was determined. In vivo PET imaging with 68Ga-mCXCL12 was conducted on days 1-6 after MI and the percentage of the injected dose (%ID/g) of the tracer uptake in the infarct area was calculated. 18F-FDG-PET was performed for anatomical landmarking. Ex vivo autoradiography identified CXCR4 upregulation in the infarct region with an increasing I/R after 12 hours (1.4 ± 0.3), showing a significant increase until day 2 (4.5 ± 0.6), followed by a plateau phase (day 4) and decrease after 10 days (1.3 ± 1.0). In vivo PET imaging identified similar CXCR4 upregulation in the infarct region which peaked around day 3 post MI (9.7 ± 5.0 %ID/g) and then subsequently decreased by day 6 (2.8 ± 1.0 %ID/g). CONCLUSION: Noninvasive molecular imaging of cardiac CXCR4 expression using a novel, murine-based, and specific 68Ga-mCXCL12 tracer is feasible both ex vivo and in vivo.


Subject(s)
Chemokine CXCL12 , Gallium Radioisotopes , Heart/diagnostic imaging , Molecular Imaging/methods , Myocardial Infarction/diagnostic imaging , Myocardium/metabolism , Positron-Emission Tomography , Receptors, CXCR4/biosynthesis , Animals , Disease Models, Animal , Mice , Radioactive Tracers
9.
Nat Commun ; 11(1): 5778, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188196

ABSTRACT

Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets.


Subject(s)
Blood Platelets/pathology , Blood Vessels/pathology , Chemotaxis , Inflammation/pathology , Pneumonia/blood , Actin-Related Protein 2-3 Complex/metabolism , Adult , Animals , Cell Movement , Cellular Microenvironment , Disease Models, Animal , Fibrinogen/metabolism , Humans , Lipopolysaccharides , Lung Injury/microbiology , Lung Injury/pathology , Methicillin-Resistant Staphylococcus aureus/physiology , Mice, Inbred C57BL , Microvessels/pathology , Pneumonia/microbiology , Pseudopodia/metabolism
10.
Neurology ; 94(22): e2346-e2360, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32434865

ABSTRACT

OBJECTIVE: To investigate whether immune cell composition and content of neutrophil extracellular traps (NETs) in relation to clinical outcome are different between acute ischemic stroke (AIS) and acute myocardial infarction (AMI), we performed histologic analysis and correlated results with clinical and procedural parameters. METHODS: We retrieved thrombi from patients with AIS (n = 71) and AMI (n = 72) during endovascular arterial recanalization and analyzed their immune cell composition and NET content by immunohistology. We then associated thrombus composition with procedural parameters and outcome in AIS and with cardiac function in patients with AMI. Furthermore, we compared AIS thrombi with AMI thrombi and differentiated Trial of Org 10172 in Acute Stroke Treatment classifications to address potential differences in thrombus pathogenesis. RESULTS: Amounts of leukocytes (p = 0.133) and neutrophils (p = 0.56) were similar between AIS and AMI thrombi. Monocytes (p = 0.0052), eosinophils (p < 0.0001), B cells (p < 0.0001), and T cells (p < 0.0001) were more abundant in stroke compared with AMI thrombi. NETs were present in 100% of patients with AIS and 20.8% of patients with AMI. Their abundance in thrombi was associated with poor outcome scores in patients with AIS and with reduced ejection fraction in patients with AMI. CONCLUSION: In our detailed histologic analysis of arterial thrombi, thrombus composition and especially abundance of leukocyte subsets differed between patients with AIS and AMI. The presence and amount of NETs were associated with patients' outcome after AIS and AMI, supporting a critical impact of NETs on thrombus stability in both conditions.


Subject(s)
Extracellular Traps/metabolism , Myocardial Infarction/blood , Stroke/blood , Thrombosis/blood , Aged , Aged, 80 and over , Cohort Studies , Extracellular Traps/chemistry , Female , Humans , Male , Middle Aged , Myocardial Infarction/diagnosis , Myocardial Infarction/surgery , Prospective Studies , Retrospective Studies , Stroke/diagnosis , Stroke/surgery , Thrombectomy/methods , Thrombosis/diagnosis , Thrombosis/surgery , Treatment Outcome
12.
Thromb Haemost ; 120(3): 466-476, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32135568

ABSTRACT

BACKGROUND: von Willebrand factor (vWF) plays an important role in platelet activation. CD40-CD40 ligand (CD40L) induced vWF release has been described in large vessels and cultured endothelium, but its role in the microcirculation is not known. Here, we studied whether CD40 is expressed in murine microvessels in vivo, whether CD40L induces platelet adhesion and leukocyte activation, and how deficiency of the vWF cleaving enzyme ADAMTS13 affects these processes. METHODS AND RESULTS: The role of CD40L in the formation of beaded platelet strings reflecting their adhesion to ultralarge vWF fibers (ULVWF) was analyzed in the murine cremaster microcirculation in vivo. Expression of CD40 and vWF was studied by immunohistochemistry in isolated and fixed cremasters. Microvascular CD40 was only expressed under inflammatory conditions and exclusively in venous endothelium. We demonstrate that CD40L treatment augmented the number of platelet strings, reflecting ULVWF multimer formation exclusively in venules and small veins. In ADAMTS13 knockout mice, the number of platelet strings further increased to a significant extent. As a consequence extensive thrombus formation was induced in venules of ADAMTS13 knockout mice. In addition, circulating leukocytes showed primary and rapid adherence to these platelet strings followed by preferential extravasation in these areas. CONCLUSION: CD40L is an important stimulus of microvascular endothelial ULVWF release, subsequent platelet string formation and leukocyte extravasation but only in venous vessels under inflammatory conditions. Here, the lack of ADAMTS13 leads to severe thrombus formation. The results identify CD40 expression and ADAMTS13 activity as important targets to prevent microvascular inflammatory thrombosis.


Subject(s)
ADAMTS13 Protein/physiology , CD40 Antigens/physiology , Microcirculation , Platelet Adhesiveness , Venous Thrombosis/blood , von Willebrand Factor/physiology , ADAMTS13 Protein/genetics , Abdominal Muscles/metabolism , Animals , Blood Platelets/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Inflammation , Leukocytes/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , P-Selectin/metabolism , Permeability , Thrombosis
13.
Circ Res ; 126(4): 486-500, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31859592

ABSTRACT

RATIONALE: A reduced rate of myocardial infarction has been reported in patients with atrial fibrillation treated with FXa (factor Xa) inhibitors including rivaroxaban compared with vitamin K antagonists. At the same time, low-dose rivaroxaban has been shown to reduce mortality and atherothrombotic events in patients with coronary artery disease. Yet, the mechanisms underlying this reduction remain unknown. OBJECTIVE: In this study, we hypothesized that rivaroxaban's antithrombotic potential is linked to a hitherto unknown rivaroxaban effect that impacts on platelet reactivity and arterial thrombosis. METHODS AND RESULTS: In this study, we identified FXa as potent, direct agonist of the PAR-1 (protease-activated receptor 1), leading to platelet activation and thrombus formation, which can be inhibited by rivaroxaban. We found that rivaroxaban reduced arterial thrombus stability in a mouse model of arterial thrombosis using intravital microscopy. For in vitro studies, atrial fibrillation patients on permanent rivaroxaban treatment for stroke prevention, respective controls, and patients with new-onset atrial fibrillation before and after first intake of rivaroxaban (time series analysis) were recruited. Platelet aggregation responses, as well as thrombus formation under arterial flow conditions on collagen and atherosclerotic plaque material, were attenuated by rivaroxaban. We show that rivaroxaban's antiplatelet effect is plasma dependent but independent of thrombin and rivaroxaban's anticoagulatory capacity. CONCLUSIONS: Here, we identified FXa as potent platelet agonist that acts through PAR-1. Therefore, rivaroxaban exerts an antiplatelet effect that together with its well-known potent anticoagulatory capacity might lead to reduced frequency of atherothrombotic events and improved outcome in patients.


Subject(s)
Arteries/metabolism , Blood Platelets/drug effects , Factor Xa/pharmacology , Receptor, PAR-1/agonists , Rivaroxaban/pharmacology , Thrombosis/prevention & control , Animals , Arteries/pathology , Blood Platelets/metabolism , Factor Xa Inhibitors/pharmacology , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/pharmacology , Humans , Mice, Inbred C57BL , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Receptor, PAR-1/metabolism , Rivaroxaban/administration & dosage , Thrombosis/metabolism
14.
Int J Mol Sci ; 20(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783490

ABSTRACT

Dysregulation of platelet function can contribute to the disease progression in sepsis. The proteasome represents a critical and vital element of cellular protein metabolism in platelets and its proteolytic activity has been associated with platelet function. However, the role of the platelet proteasome as well as its response to infection under conditions of sepsis have not been studied so far. We measured platelet proteasome activity by fluorescent substrates, degradation of poly-ubiquitinated proteins and cleavage of the proteasome substrate Talin-1 in the presence of living E. coli strains and in platelets isolated from sepsis patients. Upregulation of the proteasome activator PA28 (PSME1) was assessed by quantitative real-time PCR in platelets from sepsis patients. We show that co-incubation of platelets with living E. coli (UTI89) results in increased degradation of poly-ubiquitinated proteins and cleavage of Talin-1 by the proteasome. Proteasome activity and cleavage of Talin-1 was significantly increased in α-hemolysin (HlyA)-positive E. coli strains. Supporting these findings, proteasome activity was also increased in platelets of patients with sepsis. Finally, the proteasome activator PA28 (PSME1) was upregulated in this group of patients. In this study we demonstrate for the first time that the proteasome in platelets is activated in the septic milieu.


Subject(s)
Blood Platelets/metabolism , Proteasome Endopeptidase Complex/metabolism , Sepsis/metabolism , Sepsis/microbiology , Up-Regulation/physiology , Escherichia coli/pathogenicity , Hemolysin Proteins/metabolism , Humans , Muscle Proteins/metabolism , Platelet Activation/physiology , Platelet Aggregation/physiology , Talin/metabolism , Transcriptional Activation/physiology
15.
Sci Rep ; 9(1): 15932, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685838

ABSTRACT

In advanced inflammatory disease, microvascular thrombosis leads to the interruption of blood supply and provokes ischemic tissue injury. Recently, intravascularly adherent leukocytes have been reported to shape the blood flow in their immediate vascular environment. Whether these rheological effects are relevant for microvascular thrombogenesis remains elusive. Employing multi-channel in vivo microscopy, analyses in microfluidic devices, and computational modeling, we identified a previously unanticipated role of leukocytes for microvascular clot formation in inflamed tissue. For this purpose, neutrophils adhere at distinct sites in the microvasculature where these immune cells effectively promote thrombosis by shaping the rheological environment for platelet aggregation. In contrast to larger (lower-shear) vessels, this process in high-shear microvessels does not require fibrin generation or extracellular trap formation, but involves GPIbα-vWF and CD40-CD40L-dependent platelet interactions. Conversely, interference with these cellular interactions substantially compromises microvascular clotting. Thus, leukocytes shape the rheological environment in the inflamed venular microvasculature for platelet aggregation thereby effectively promoting the formation of blood clots. Targeting this specific crosstalk between the immune system and the hemostatic system might be instrumental for the prevention and treatment of microvascular thromboembolic pathologies, which are inaccessible to invasive revascularization strategies.


Subject(s)
Blood Platelets/physiology , Neutrophils/physiology , Platelet Aggregation/physiology , Thrombosis/pathology , Animals , Blood Platelets/metabolism , CD40 Antigens/deficiency , CD40 Antigens/genetics , CD40 Ligand/deficiency , CD40 Ligand/genetics , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Microfluidics/instrumentation , Microfluidics/methods , Microscopy, Fluorescence , Microvessels/drug effects , Microvessels/pathology , Neutrophils/immunology , Platelet Adhesiveness/drug effects , Platelet Glycoprotein GPIb-IX Complex/metabolism , Rheology , Thrombosis/metabolism , von Willebrand Factor/metabolism
16.
Blood ; 134(21): 1859-1872, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31481482

ABSTRACT

Clinical observations implicate a role of eosinophils in cardiovascular diseases because markers of eosinophil activation are elevated in atherosclerosis and thrombosis. However, their contribution to atherosclerotic plaque formation and arterial thrombosis remains unclear. In these settings, we investigated how eosinophils are recruited and activated through an interplay with platelets. Here, we provide evidence for a central importance of eosinophil-platelet interactions in atherosclerosis and thrombosis. We show that eosinophils support atherosclerotic plaque formation involving enhanced von Willebrand factor exposure on endothelial cells and augmented platelet adhesion. During arterial thrombosis, eosinophils are quickly recruited in an integrin-dependent manner and engage in interactions with platelets leading to eosinophil activation as we show by intravital calcium imaging. These direct interactions induce the formation of eosinophil extracellular traps (EETs), which are present in human thrombi and constitute a substantial part of extracellular traps in murine thrombi. EETs are decorated with the granule protein major basic protein, which causes platelet activation by eosinophils. Consequently, targeting of EETs diminished thrombus formation in vivo, which identifies this approach as a novel antithrombotic concept. Finally, in our clinical analysis of coronary artery thrombi, we identified female patients with stent thrombosis as the population that might derive the greatest benefit from an eosinophil-inhibiting strategy. In summary, eosinophils contribute to atherosclerotic plaque formation and thrombosis through an interplay with platelets, resulting in mutual activation. Therefore, eosinophils are a promising new target in the prevention and therapy of atherosclerosis and thrombosis.


Subject(s)
Atherosclerosis/pathology , Blood Platelets/pathology , Eosinophils/pathology , Extracellular Traps/metabolism , Thrombosis/pathology , Animals , Atherosclerosis/metabolism , Blood Platelets/metabolism , Eosinophils/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Platelet Activation/physiology , Thrombosis/metabolism
17.
Front Cardiovasc Med ; 6: 99, 2019.
Article in English | MEDLINE | ID: mdl-31417909

ABSTRACT

Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6ß1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype in vivo displayed with a larger or smaller reduction in multi-parameter analysis of collagen-dependent thrombus formation in vitro. Remarkably, in only approximately half of the mouse strains that displayed reduced arterial thrombosis in vivo, this was accompanied by impaired hemostasis. This was also reflected by comparing in vitro thrombus formation (by microfluidics) with alterations in in vivo bleeding time. In conclusion, the presently developed multi-parameter analysis of thrombus formation using microfluidics can be used to: (i) determine the severity of platelet abnormalities; (ii) distinguish between altered platelet adhesion, aggregation and activation; and (iii) elucidate both collagen and non-collagen dependent alterations of thrombus formation. This approach may thereby aid in the better understanding and better assessment of genetic variation that affect in vivo arterial thrombosis and hemostasis.

18.
Thromb Haemost ; 119(8): 1274-1282, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31254975

ABSTRACT

Atherothrombosis is a frequent cause of cardiovascular mortality. It is mostly triggered by plaque rupture and exposure of the thrombogenic subendothelial matrix, which initiates platelet aggregation and clot formation. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. Thus, there is an unmet clinical need for optimized therapies. Neutrophil activation and consecutive interactions of neutrophils and platelets contribute mechanistically to thromboinflammation and arterial thrombosis, and thus present a potential therapeutic target. Platelet-neutrophil interactions are mediated through adhesion molecules such as P-selectin and P-selectin glycoprotein ligand 1 as well as glycoprotein Ib and macrophage-1 antigen, which mediate physical cell interactions and intracellular signaling. Release of soluble mediators as well as direct signaling between platelets and neutrophils lead to their reciprocal activation and neutrophil release of extracellular traps, scaffolds of condensed chromatin that play a prothrombotic role in atherothrombosis. In this article, we review the role of neutrophils and neutrophil-derived prothrombotic molecules in platelet activation and atherothrombosis, and highlight potential therapeutic targets.


Subject(s)
Atherosclerosis/metabolism , Blood Platelets/cytology , Cell Communication , Neutrophils/cytology , Thrombosis/metabolism , Animals , Cell Adhesion , Extracellular Traps , Hemostasis , Humans , Inflammation , Membrane Glycoproteins/metabolism , Mice , P-Selectin/metabolism , Platelet Activation , Platelet Aggregation , Signal Transduction , Treatment Outcome
19.
J Thromb Haemost ; 17(9): 1489-1499, 2019 09.
Article in English | MEDLINE | ID: mdl-31172692

ABSTRACT

OBJECTIVE: Retinoid X receptors (RXR) are a family of nuclear receptors that play critical roles in the regulation of numerous fundamental biological processes including cell proliferation, differentiation, and death. Earlier studies suggested that treatment with RXR agonists attenuates platelet activation in all adults (male and femal) and mice; however, the underlying molecular mechanisms have remained insufficiently understood. To elaborate further on this issue, we characterized megakaryocyte and platelet-specific RXR knockout mice to study platelet function in vitro and arterial thrombosis in vivo. APPROACH AND RESULTS: First, we identified RXRß as the dominant RXR receptor in mouse platelets, prompting us to generate a megakaryocyte and platelet-specific PF4Cre ;RXRßflox/flox mouse. Second, we studied activation, spreading, and aggregation of platelets from C57Bl/6 wild-type mice (WT), PF4Cre+ ;RXRßflox/flox mice, and PF4Cre- ;RXRßflox/flox littermate controls in the presence or absence of RXR ligands, that is, 9-cis-retinoic acid (9cRA) and methoprene acid (MA). We found that in vitro treatment with RXR ligands attenuates spreading and aggregation of platelets and increases proplatelet particle formation from megakaryocytes (MK). However, these effects are also observed in RXRß-deficient platelets and MKs and are thus independent of RXRß. Third, we investigated arterial thrombus formation in an iron chloride (FeCl3)-induced vascular injury model in vivo, which is also not affected by the absence of RXRß in platelets. CONCLUSIONS: Absence of the most abundant RXR receptor in mouse platelets, RXRß, does not affect platelet function in vitro and thrombus formation in vivo. Furthermore, RXR agonists' mediated effects on platelet function are independent of RXRß expression. Hence, our data do not support a significant contribution of RXRß to arterial thrombosis in mice.


Subject(s)
Blood Platelets/physiology , Carotid Artery Thrombosis/blood , DNA-Binding Proteins/physiology , Animals , Carotid Artery Thrombosis/chemically induced , Chlorides/toxicity , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Female , Ferric Compounds/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Activation , Thrombopoiesis/physiology
20.
J Exp Med ; 216(7): 1700-1723, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31126966

ABSTRACT

The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed Regnase-3-deficient mice, which develop hypertrophic lymph nodes. We used various mice with immune cell-specific deletions of Regnase-3 to demonstrate that Regnase-3 acts specifically within myeloid cells. Regnase-3 deficiency systemically increased IFN signaling, which increased the proportion of immature B and innate immune cells, and suppressed follicle and germinal center formation. Expression analysis revealed that Regnase-3 and Regnase-1 share protein degradation pathways. Unlike Regnase-1, Regnase-3 expression is high specifically in macrophages and is transcriptionally controlled by IFN signaling. Although direct targets in macrophages remain unknown, Regnase-3 can bind, degrade, and regulate mRNAs, such as Zc3h12a (Regnase-1), in vitro. These data indicate that Regnase-3, like Regnase-1, is an RNase essential for immune homeostasis but has diverged as key regulator in the IFN pathway in macrophages.


Subject(s)
Homeostasis/immunology , Immunity, Innate , Interferons/metabolism , Myeloid Cells/metabolism , Ribonucleases/metabolism , 3' Untranslated Regions , Animals , Autoimmunity , B-Lymphocytes/metabolism , Flow Cytometry , Gene Expression Regulation , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/enzymology , Real-Time Polymerase Chain Reaction , Ribonucleases/genetics , Signal Transduction , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...