Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Food Res Int ; 192: 114809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147506

ABSTRACT

Legumes are abundant sources of proteins, and white common bean proteins play an important role in air-water interface properties. This study aims to investigate the technical-functional properties of white common bean protein isolate (BPI) as a function of pH, protein concentration, and guar gum (GG) presence. BPI physicochemical properties were analyzed in terms of solubility, zeta potential, and mean particle diameter at pH ranging from 2 to 9, in addition to water-holding capacity (WHC), oil-holding capacity (OHC), and thermogravimetric analysis. Protein dispersions were evaluated in terms of dynamic, interfacial, and foam-forming properties. BPI showed higher solubility (>80 %) at pH 2 and above 7. Zeta potential and mean diameter ranged from 15.43 to -34.08 mV and from 129.55 to 139.90 nm, respectively. BPI exhibited WHC and OHC of 1.37 and 4.97 g/g, respectively. Thermograms indicated decomposition temperature (295.81 °C) and mass loss (64.73 %). Flow curves indicated pseudoplastic behavior, with higher η100 values observed in treatments containing guar gum. The behavior was predominantly viscous (tg δ > 1) at lower frequencies, at all pH levels, shifting to predominantly elastic at higher frequencies. Equilibrium surface tension (γeq) ranged from 43.87 to 41.95 mN.m-1 and did not decrease with increasing protein concentration under all pH conditions. All treatments exhibited ϕ < 15°, indicating predominantly elastic surface films. Foaming properties were influenced by higher protein concentration and guar gum addition, and the potential formation of protein-polysaccharide complexes favored the kinetic stability of the system.


Subject(s)
Galactans , Mannans , Phaseolus , Plant Gums , Plant Proteins , Solubility , Surface Properties , Plant Gums/chemistry , Galactans/chemistry , Mannans/chemistry , Hydrogen-Ion Concentration , Plant Proteins/chemistry , Phaseolus/chemistry , Particle Size , Water/chemistry
2.
Food Res Int ; 161: 111822, 2022 11.
Article in English | MEDLINE | ID: mdl-36192891

ABSTRACT

The Covid-19 pandemic has strongly impacted people's lives and the food industry. In this sense, food products claiming nutritional and health-promoting benefits due to the presence of bioactive peptides and probiotics, such as Greek-style yogurt, have been in demand. The objective of this work was to investigate, through word association, the perception of the consumers regarding the seven concepts related to Greek-style yogurt (traditional, ultra-creamy, zero fat, high content proteins, zero lactose, light and with no added sugars), in the context of social isolation due to Covid-19. In this online survey, 346 participants completed a questionnaire. The participants were divided according to health concerns (increased, not changed, or decreased) and eating habits (improved, not changed, or worsened) during the Covid-19 pandemic. Chi-square and prototypical analysis were used as statistical tests. During the Covid-19 pandemic, based on self-report, around 66% of the participants had their eating habits and their concerns about health changed. The general associations were related to the categories pleasure, health, creamy, pleasant texture, food restriction, and loss of sensory quality. 'Health' and 'pleasure' were negatively associated with the conceptualization of Greek-style yogurt. For the zero-fat, light, and sugar-free Greek-style yogurts, the terms creamy and ultra-creamy are sensory appealing to the consumers. In general, the price and concerns about health are factors that strongly influence the purchase intention of Greek-style yogurts. The yogurts were associated with sensory and non-sensory characteristics, which can be useful for marketing strategies for of different product concepts.


Subject(s)
COVID-19 , Yogurt , COVID-19/epidemiology , Humans , Lactose , Pandemics , Technology , Yogurt/analysis
3.
Food Res Int ; 159: 111583, 2022 09.
Article in English | MEDLINE | ID: mdl-35940758

ABSTRACT

Red beetroot (Beta vulgaris L.) is a great source of betalains. The main betalains are the betacyanins, responsible for the purple color, and betaxanthins, which present a brownish color. These pigments can present antioxidant activity and are very unstable under certain conditions, such as temperature, extreme ranges of pH, and exposure to light. The aim of this work was to obtain beetroot extract (BE) via ultrasound and transform it into nanoparticles by using polyethylene glycol (PBE) and polyethylene glycol with low molecular weight chitosan (PCBE) as dispersants. The stability of the main betalains in the nanodispersions and the effects of the nanodispersions on the color and rheological properties of commercial Greek yogurt were evaluated. Compared to pristine BE, PCBE nanoparticles presented increased stability for the main betalains in acidic conditions (pH 3.0 and 5.0) of 56% and 22%, respectively. Both PBE and PCBE showed enhanced relative thermal stability compared to pristine BE. Furthermore, PCBE improved commercial Greek yogurt's rheological properties and color parameters. PCBE nanodispersions can be successfully applied as a color additive to commercial Greek yogurt.


Subject(s)
Betalains , Yogurt , Betacyanins/analysis , Betalains/analysis , Betaxanthins/analysis , Polyethylene Glycols , Vegetables/chemistry
4.
Food Res Int ; 158: 111567, 2022 08.
Article in English | MEDLINE | ID: mdl-35840255

ABSTRACT

Despite some thermodynamics studies about ß-lactoglobulin (ßLG) and resveratrol (RES) interactions, there is a gap regarding kinetics data about ßLG-RES complex formation. Here, we determined the kinetic and thermodynamic parameters of ßLG-RES interactions by using surface plasmon resonance (SPR). The kinetic association parameters were dependent on the 3D water structure present on the solvation shell of both interacting molecules. At lower temperature (285.15 K), all activation energies were positive (Eacta‡= 82.86 kJ.mol-1,TΔSa‡= 32.26 kJ.mol-1, and ΔCpa‡= 4.15 kJ.mol-1K-1) due to the higher water structuration on the RES and ßLG solvation shell. All these energetic barriers become mainly from the energetic cost for the desolvation process of RES and ßLG. At higher temperature (301.15 K), the solvation water structure decreases and all the above activation energies become negative (Eacta‡=-121.58 kJ.mol-1,TΔSa‡=-173.59 kJ.mol-1, and ΔCpa‡=-29.92 kJ.mol-1K-1) because the direct interaction between desolvated RES and ßLG molecules released more energy than it is absorbed by desolvation process. However, kinetic dissociation parameters were not dependent on the hydrogen bond density of the water solvation shell as showed by the temperature independence of dissociation energetic parameters. This non-dependence of the dissociation process from the desolvation step probably is because the water molecules interacting with the ßLG-RES complex is not concentrated around/inside the protein site of interaction. The association of free molecules was 1.5 times faster than the dissociation of the thermodynamically stable complex (ΔG(a)‡â€¯â‰… 48.15 kJ.mol-1, ΔG(d)‡â€¯â‰… 73.10 kJ.mol-1). The lower free energy barrier observed for the association came from an isokinetic process where entropic and enthalpic parameters compensated for each other. The ΔG° values indicate that the thermodynamically stable complex predominates over free molecules. At low temperature (285.15 K), the hydrophobic interaction (ΔH° = 73.06 kJ.mol-1; TΔS° = 99.60 kJ.mol-1) drove the ßLG-RES complex formation while at high temperature (301.15 K), hydrophilic interactions became dominant (ΔH° = -142.50 kJ.mol-1; TΔS° = -118.18 kJ.mol-1).


Subject(s)
Lactoglobulins , Water , Kinetics , Resveratrol , Thermodynamics
5.
Food Chem ; 384: 132485, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35219985

ABSTRACT

The thermodynamics and kinetics of arachin-Congo red (ARA-CR) and conarachin-Congo red (CON-CR) interactions were studied using surface plasmon resonance. KCl led to a reduction of up to 55% in the values of the associated kinetic constants, but it had less influence on the dissociation rates (less than 12%). The change in ionic strength had little effect on the thermodynamic stability of the complexes, but it did reduce their affinities ( [Formula: see text] from 3.52 to 2.44 × 103 M-1 and [Formula: see text] from 15.1 to 12.5 × 103 M-1). The shielding of the electrical double layer favored ARA-CR hydrophilic interactions ( [Formula: see text] decreased from -30.60 to -42.98 kJ mol-1). On the other hand, hydrophobic interactions came to dominate during the formation of [CON-CR]0 ( [Formula: see text] increased from -11.21 to 28.34 kJ mol-1 and [Formula: see text] increased from 12.64 to 51.73 kJ.mol-1). The data presented here improve our understanding of plant-based protein nanocarriers of small bioactive molecules.


Subject(s)
Congo Red , Molecular Probes , Congo Red/chemistry , Kinetics , Plant Proteins , Thermodynamics
6.
Int J Biol Macromol ; 184: 990-999, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34197852

ABSTRACT

To explore in vivo application of quantum dots (QDs), it is essential to understand the dynamics and energetics of interactions between QDs and proteins. Here, surface plasmon resonance (SPR) and molecular docking were employed to investigate the kinetics and thermodynamics of interactions between human serum albumin (HSA) and CdTe QDs (~3 nm) functionalized with mercaptopropionic acid (MPA) or thioglycolic acid (TGA). Kinetic analysis showed that HSA-QD interactions involved transition-complex formation. Despite the structural similarities between MPA and TGA, the [HSA-CdTe@TGA]‡ formation by association of free HSA and QDs demanded 70% more energy and higher entropic gain (Ea-TGA‡= 65.10 and T∆Sa-TGA‡= 28.62 kJ mol-1) than the formation of [HSA-CdTe@MPA]‡ (Ea-MPA‡ = 38.13 and T∆Sa-MPA‡ = 0.53kJ mol-1). While the [HSA-CdTe@MPA]° dissociation required higher energy and lower entropy loss (Ed-MPA‡ = 49.96 and T∆Sd-MPA‡ = - 32.18kJ mol-1) than the [HSA-CdTe@TGA]° dissociation (Ed-TGA‡= 30.78 and T∆Sd-TGA‡= - 51.12 kJ mol-1). The stability of [HSA-QDs]° was independent of the temperature and functionalizing group. However, the enthalpic and entropic components were highly affected by the substitution of MPA (ΔH° = - 11.83 and TΔS° = 32.72 kJ mol-1) with TGA (ΔH° = 34.31 and TΔS° = 79.73 kJ mol-1). Furthermore, molecular docking results indicated that the metal site on the QDs contributes to the stabilization of [HSA-QDs]°. Therefore, differences in QD functionalization and surface coverage densities can alter the HSA-QD interaction, thus their application.


Subject(s)
Cadmium Compounds/pharmacology , Serum Albumin, Human/metabolism , Sulfhydryl Compounds/chemistry , Tellurium/pharmacology , Thioglycolates/chemistry , Cadmium Compounds/chemistry , Entropy , Humans , Kinetics , Molecular Docking Simulation , Quantum Dots , Serum Albumin, Human/chemistry , Surface Plasmon Resonance , Tellurium/chemistry , Thermodynamics
7.
Food Chem ; 307: 125514, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31639576

ABSTRACT

The thermodynamics and kinetics of binding between human serum albumin (HSA) and resveratrol (RES) or its analog (RESAn1) were investigated by surface plasmon resonance (SPR). The binding constant and the kinetic constants of association and dissociation indicated that RESAn1 has higher affinity toward HSA than does RES. The formation of these complexes was entropically driven ( [Formula: see text] , [Formula: see text]  KJ mol-1). However, for both polyphenols, the activation energy (Eact) of association (a) of free molecules was higher than that for dissociation (d) of the stable complex ( [Formula: see text]  KJ mol-1), and the rate of association was faster than that of dissociation since the activation Gibbs free energy (ΔG‡) was lower for the former (ΔGaHSA-RES‡â‰…54.73,ΔGdHSA-RES‡â‰…73.83,ΔGaHSA-RESAn1‡â‰…54.14,ΔGdHSA-RESAn1‡â‰…73.97 KJ mol-1). This study showed that small differences in the structure of polyphenols such as RES and RESAn1 influenced the thermodynamics and kinetics of the complex formation with HSA.


Subject(s)
Phenols/chemistry , Resveratrol/metabolism , Serum Albumin, Human/metabolism , Humans , Hydrogen-Ion Concentration , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Kinetics , Protein Binding , Resveratrol/chemistry , Serum Albumin, Human/chemistry , Surface Plasmon Resonance , Temperature , Thermodynamics
8.
Colloids Surf B Biointerfaces ; 181: 798-805, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31247404

ABSTRACT

Characterizing the energetics and molecular dynamics of binding between proteins and bioactive compounds is strategic. Using surface plasmon resonance, we demonstrated that ß-casein (ß-cas) and quercetin (Qct) form supramolecular complexes driven by an increase in entropy (ΔH°â€¯= 25.86 and TΔS° =53.49 kJ∙mol-1 at 25 °C). It was possible to infer that the ß-cas/Qct complex was formed via an activated complex synthesized by an entropic reduction (TΔS‡(a)= -15.31 kJ mol-1 and TΔS‡(d)= -68.80 kJ mol-1 at 25 °C) and an enthalpic increase (ΔH‡(a) = 30.87 and ΔH‡(d) =5.0 kJ∙mol-1 at 25 °C). Independent of the nature of the Hofmeister ions, the salts KCl or KSCN increased complex stability by decreasing both the kinetic and thermodynamic enthalpy values, through shielding of the electrostatic interactions at the electric double layer of the interacting molecules. An increase in temperature favored both the association of the free interacting molecules and the dissociation of the thermodynamically stable ß-cas/Qct complexes. These results provide insights into the ß-cas/Qct interaction process and contribute to the understanding of how Hofmeister ions can modulate intermolecular interactions between proteins and small molecules.


Subject(s)
Caseins/chemistry , Molecular Dynamics Simulation , Quercetin/chemistry , Surface Plasmon Resonance , Thermodynamics , Kinetics , Particle Size , Surface Properties
9.
Int J Biol Macromol ; 133: 860-866, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31028811

ABSTRACT

Determine the thermodynamic and kinetic parameters of interaction between micellar casein (MC) and curcumin (CUR) is useful for the application of MC-CUR systems in food products. We used surface plasmon resonance (SPR) and ultraviolet-visible spectrophotometry (UV-vis) to study the complex formation between MC obtained from skimmed milk and CUR, MC carrying capacity, and thermal protection for CUR at a pH of 6.6. An MC could carry about 18,000 molecules of CUR. SPR suggested an enthalpy-driven process (∆H°â€¯= -64.63 kJ∙mol-1 and T∆S° ranging from -42.45 to -44.46 kJ∙mol-1). Temperature increased reduced the rate of MC-CUR complex formation and increased its dissociation rate. The activation energy for the formation of MC-CUR activated complexes was negative for association of free MC and CUR molecules (-62.8 kJ mol-1) and positive for dissociation of the thermodynamically stable complexes (1.80 kJ mol-1). MC protected the CUR against its thermal degradation when it was subjected to different temperatures (30, 40, 50, and 60 °C for 5.5 h). This study shows the importance of characterizing MC-small molecules interactions for better application of MC as a nanocarrier.


Subject(s)
Caseins/metabolism , Curcumin/chemistry , Curcumin/metabolism , Micelles , Surface Plasmon Resonance , Kinetics , Protein Binding , Temperature
10.
Food Chem ; 280: 1-7, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30642473

ABSTRACT

Colorimetric nanosensors formed of polydiacetylene (PDA), triblock copolymer (L64 or F68), and sodium dodecyl sulfate (SDS), so-called nanoblends, were developed to detect enrofloxacin (ENRO) in aqueous media. The nanosensors show hydrodynamic diameter ranging from 234.2 ±â€¯3.5 to 801.6 ±â€¯17.8 nm for SDS concentrations of 13.0-21.0 mM, respectively. The lowest limit of detection was 0.054 µM, which is five times smaller than the maximum limit allowed by the European Union. The response surfaces showed that both the SDS and ENRO concentrations influenced the colorimetric response (p < 0.05), and kinetic rate of colorimetric transition (RCT). SDS concentration between 11.0 and 14.0 mM in the nanoblend yielded the most sensitive nanosensors for detecting ENRO. When L64 was replaced by F68, the colorimetric response of the nanoblends was similar, but PDA/F68/SDS showed a slower RCT than PDA/L64/SDS. The developed nanosensor is a sensitive and simple device for the fast detection of ENRO.


Subject(s)
Colorimetry , Enrofloxacin/analysis , Polyacetylene Polymer/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Anti-Bacterial Agents/analysis , Limit of Detection , Sodium Dodecyl Sulfate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL