Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36839976

ABSTRACT

Tailor-made and designed micro- and nanocarriers can bring significant benefits over their traditional macroscopic counterparts in drug delivery applications. For the successful loading and subsequent release of bioactive compounds, carriers should present a high loading capacity, trigger release mechanisms, biodegradability and biocompatibility. Hydrophobic drug molecules can accumulate in fat tissues, resulting in drawbacks for the patient's recovery. To address these issues, we propose to combine the advantageous features of both host molecules (cyclodextrin) and calcium carbonate (CaCO3) particles in order to load hydrophobic chemicals. Herein, hybrid cyclodextrin-CaCO3 micro- to nano-particles have been fabricated by combining Na2CO3 solution and CaCl2 solution in the presence of an additive, namely poly (vinylsulfonic acid) (PVSA) or glycerol (gly). By investigating experimental parameters and keeping the Na2CO3 and CaCl2 concentrations constant (0.33 M), we have evidenced that the PVSA or gly concentration and mixing time have a direct impact on the final cyclodextrine-CaCO3 particle size. Indeed, by increasing the concentration of PVSA (5 mM to 30 mM) or gly (0.7 mM to 4 mM) or the reaction time (from 10 min to 4 h), particles with a size of 200 nm could be reached. Interestingly, the vaterite or calcite form could also be selected, according to the experimental conditions. We hypothesised that the incorporation of PVSA or gly into the precipitation reaction might reduce the nucleation rate by sequestering Ca2+. The obtained particles have been found to keep their crystal structure and surface charge after storage in aqueous media for at least 6 months. In the context of improving the therapeutic benefit of hydrophobic drugs, the developed particles were used to load the hydrophobic drug tocopherol acetate. The resulting particles are biocompatible and highly stable in a physiological environment (pH 7.4, 0.15 M NaCl). A selective release of the cargo is observed in acidic media (pH lower than 5).

2.
Sensors (Basel) ; 20(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973054

ABSTRACT

Highly sensitive multicomponent materials designed for the recognition of hazardous compounds request control over interfacial chemistry. The latter is a key parameter in the construction of the sensing (macro) molecular architectures. In this work, multi-walled carbon nanotubes (CNTs) were deposited on diazonium-modified, flexible indium tin oxide (ITO) electrodes prior to the electropolymerization of pyrrole. This three-step process, including diazonium electroreduction, the deposition of CNTs and electropolymerization, provided adhesively-bonded, polypyrrole-wrapped CNT composite coatings on aminophenyl-modified flexible ITO sheets. The aminophenyl (AP) groups were attached to ITO by electroreduction of the in-situ generated aminobenzenediazonium compound in aqueous, acidic medium. For the first time, polypyrrole (PPy) was electrodeposited in the presence of both benzenesulfonic acid (dopant) and ethylene glycol-bis(2-aminoethylether)-tetraacetic acid (EGTA), which acts as a chelator. The flexible electrodes were characterized by XPS, Raman and scanning electron microscopy (SEM), which provided strong supporting evidence for the wrapping of CNTs by the electrodeposited PPy. Indeed, the CNT average diameter increased from 18 ± 2.6 nm to 27 ± 4.8, 35.6 ± 5.9 and 175 ± 20.1 after 1, 5 and 10 of electropolymerization of pyrrole, respectively. The PPy/CNT/NH2-ITO films generated by this strategy exhibit significantly improved stability and higher conductivity compared to a similar PPy coating without any embedded CNTs, as assessed by from electrochemical impedance spectroscopy measurements. The potentiometric response was linear in the 10-8-3 × 10-7 mol L-1 Pb(II) concentration range, and the detection limit was 2.9 × 10-9 mol L-1 at S/N = 3. The EGTA was found to drastically improve selectivity for Pb(II) over Cu(II). To account for this improvement, the density functional theory (DFT) was employed to calculate the EGTA-metal ion interaction energy, which was found to be -374.6 and -116.4 kJ/mol for Pb(II) and Cu(II), respectively, considering solvation effects. This work demonstrates the power of a subtle combination of diazonium coupling agent, CNTs, chelators and conductive polymers to design high-performance electrochemical sensors for environmental applications.

3.
Langmuir ; 36(1): 74-83, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31786922

ABSTRACT

Surface studies of developed fingerprints have aided in the elimination of criminal cases before moving to the court. The combination of X-ray photoelectron spectroscopy (XPS) with the aryldiazonium gold(III), 4-O2NC6H4N2+AuCl4-, surface modifier has been shown to be a novel approach in latent fingerprint detection and development for the quantification of film elements. The robust gold-aryl film was developed on the reducing chemicals excreted in the sebaceous fingerprints without the need for external stimuli and at a lesser extent after contacting the free metal surface. The concurrent reduction of the diazonium functional group and gold(III) from [AuCl4]- developed a robust gold-aryl film, which showed increasing gold(0) quantity in the time range of 30-120 min over copper coins and model flat sheets. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) support the presence of reduced gold on the top of the latent fingerprints and the presence of CuO resulting from the reaction of the diazonium salt with copper metal. This research combines the quantification of deposits using XPS, a surface-sensitive technique for chemical analysis, in addition to surface imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...