Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; : 1-14, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38775962

ABSTRACT

The Wide Area Demonstration (WAD) was a field exercise conducted under the U.S. EPA's Analysis of Coastal Operational Resiliency program, in conjunction with the U.S. Department of Homeland Security and the U.S. Coast Guard. The purpose of the WAD was to operationalize at field scale aspects of remediation activities that would occur following an outdoor release of Bacillus anthracis spores, including sampling and analysis, decontamination, data management, and waste management. The WAD was conducted in May 2022 at Fort Walker (formerly known as Fort A.P. Hill) and utilized Bacillus atrophaeus as a benign simulant for B. anthracis. B. atrophaeus spores were inoculated onto the study area at the beginning of the study, and air samples were collected daily during each of the different phases of the WAD using Dry Filter Units (DFUs). Ten DFU air samplers were placed at the perimeter of the study area to collect bioaerosols onto two parallel 47-mm diameter polyester felt filters, which were then subsequently analyzed in a microbiological laboratory for the quantification of B. atrophaeus. The study demonstrated the use of DFUs as a rugged and robust bioaerosol collection device. The results indicated that the highest B. atrophaeus spore air concentrations (up to ~ 5 colony forming units/m3) occurred at the beginning of the demonstration (e.g. during inoculation and characterization sampling phases) and generally downwind from the test site, suggesting transport of the spores was occurring from the study area. Very few B. atrophaeus spores were detected in the air after several weeks and following decontamination of exterior surfaces, thus providing an indication of the site decontamination procedures' effectiveness. No B. atrophaeus spores were detected in any of the blank or background samples.Implications: Following an incident involving a release of Bacillus anthracis spores or other biological threat agent into the outdoor environment, understanding the factors that may affect the bioagent's fate and transport can help predict viable contaminant spread via the ambient air. This paper provides scientific data for the first time on ambient air concentrations of bacterial spores over time and location during different phases of a field test in which Bacillus atrophaeus (surrogate for B. anthracis) spores were released outdoors as part of a full-scale study on sampling and decontamination in an urban environment. This study advances the knowledge related to the fate and transport of bacterial spores (such as those causing anthrax disease) as an aerosol in the outdoor environment over the course of three weeks in a mock urban environment and has exposure and health risk implications. The highest spore air concentrations occurred at the beginning of the study (e.g. during inoculation of surfaces and characterization sampling), and in the downwind direction, but diminished over time; few B. atrophaeus spores were detected in the air after several weeks and following decontamination. Therefore, in an actual incident, potential reaerosolization of the microorganism and subsequent transport in the air during surface sampling and remediation efforts should be considered for determining exclusion zone locations and estimating potential risk to neighboring communities. The data also provide evidence suggesting that the large-scale decontamination of outdoor surfaces may reduce air concentrations of the bioagent, which is important since exposure of B. anthracis via inhalation is a primary concern.

2.
Sci Total Environ ; 897: 165307, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37414183

ABSTRACT

This study examined the washoff of Bacillus globigii (Bg) spores from concrete, asphalt, and grass surfaces by stormwater. Bg is a nonpathogenic surrogate for Bacillus anthracis, which is a biological select agent. Areas (2.74 m × 7.62 m) of concrete, grass, and asphalt were inoculated twice at the field site during the study. Spore concentrations were measured in runoff water after seven rainfall events (1.2-65.4 mm) and complimentary watershed data were collected for soil moisture, depth of water in collection troughs, and rainfall using custom-built telemetry units. An average surface loading of 107.79 Bg spores/m2 resulted in peak spore concentrations in runoff water of 102, 260, and 4.1 CFU/mL from asphalt, concrete, and grass surfaces, respectively. Spore concentrations in the stormwater runoff were greatly reduced by the third rain event after both inoculations, but still detectable in some samples. When initial rainfall events occurred longer after the initial inoculation, the spore concentrations (both peak and average) in the runoff were diminished. The study also compared rainfall data from 4 tipping bucket rain gauges and a laser disdrometer and found they performed similarly for values of total rainfall accumulation while the laser disdrometer provided additional information (total storm kinetic energy) useful in comparing the seven different rain events. The soil moisture probes are recommended for assistance in predicting when to sample sites with intermittent runoff. Sampling trough level readings were critical to understanding the dilution factor of the storm event and the age of the sample collected. Collectively the spore and watershed data are useful for emergency responders faced with remediation decisions after a biological agent incident as the results provide insight into what equipment to deploy and that spores may persist in runoff water at quantifiable levels for months. The spore measurements are also a novel dataset for stormwater model parameterization for biological contamination of urban watersheds.


Subject(s)
Bacillus subtilis , Spores, Bacterial , Rain , Water , Water Movements , Soil , Environmental Monitoring
3.
Atmos Environ (1994) ; 2582021 Aug 01.
Article in English | MEDLINE | ID: mdl-34526852

ABSTRACT

Following the release of a harmful substance within an urban environment, buildings and street canyons create complex flow regimes that affect dispersion and localized effluent concentrations. While some fast-response dispersion models can capture the effects caused by individual buildings, further research is required to refine urban characterizations such as plume channeling and spreading, and initial dispersion, especially within the presence of a nonhomogeneous array of structures. Field, laboratory, and modeling experiments that simulate urban or industrial releases are critical in advancing current dispersion models. This project leverages the configuration of buildings used in a full-scale, mock urban field study to examine the concentrations of a neutrally buoyant tracer in a series of wind tunnel and Embedded Large Eddy Simulation (ELES) experiments. The behavior, propagation, and magnitude of the plumes were examined and compared to identify microscale effects. After demonstrating excellent quantitative and qualitative comparisons between the wind tunnel and ELES via lateral and vertical concentration profiles, we show that a nonlinear least squares fit of the Gaussian plume equation well represents these profiles, even within the array of buildings and network of street canyons. The initial plume dispersion depended strongly on the structures immediately adjacent to the release, and consequently, the near-surface plume spread very rapidly in the first few street canyons downwind of the source. The ELES modeling showed that under slightly oblique incoming wind directions of 5° and 15°, an additional 5° and 14° off-axis channeling of the plume occurred at ground level, respectively. This indicates how building structures can cause considerable plume drift from the otherwise expected centerline axis, especially with greater wind obliquity. Additionally, AERMOD was used to represent the class of fast-running, Gaussian dispersion models to inform where these types of models may be usefully applied within urban areas or groups of buildings. Using an urban wind speed profile and other parameters that may be locally available after a release, AERMOD was shown to qualitatively represent the ground-level plume while somewhat underestimating peak concentrations. It also overestimated the lateral plume spread and was challenged in the very near-field to the source. Adding a turbulence profile from the ELES data into AERMOD's meteorological input improved model estimates of lateral plume spread and centerline concentrations, although peak concentration values were still underestimated in the far field. Finally, we offer some observations and suggestions for Gaussian dispersion modeling based on this mock urban modeling exercise.

4.
Atmos Environ (1994) ; 243: 117871, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32982566

ABSTRACT

The Jack Rabbit II Special Sonic Anemometer Study (JRII-S), a field project designed to examine the flow and turbulence within a systematically arranged mock-urban environment constructed from CONEX shipping containers, is described in detail. The study involved the deployment of 35 sonic anemometers at multiple heights and locations, including a 32 m tall, unobstructed tower located about 115 m outside the building array to document the approach wind flow characteristics. The purpose of this work was to describe the experimental design, analyze the sonic data, and report observed wind flow patterns within the urban canopy in comparison to the approaching boundary layer flow. We show that the flow within the building array follows a tendency towards one of three generalized flow regimes displaying channeling over a wide range of wind speeds, directions, and stabilities. Two or more sonic anemometers positioned only a few meters apart can have vastly different flow patterns that are dictated by the building structures. Within the building array, turbulence values represented by normalized vertical velocity variance ( σ w 2 ) are at least two to three times greater than that in the approach flow. There is also little evidence that σ w 2 measured at various heights or locations within the JRII array is a strong function of stability type in contrast to the approach flow. The results reinforce how urban areas create complicated wind patterns, channeling effects, and localized turbulence that can impact the dispersion of an effluent release. These findings can be used to inform the development of improved wind flow algorithms to better characterize pollutant dispersion in fast-response models.

SELECTION OF CITATIONS
SEARCH DETAIL
...