Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Food Microbiol ; 388: 110066, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36610235

ABSTRACT

Atmospheric cold plasma (ACP) is an innovative non-thermal decontamination technology that is considered a great alternative to conventional preservation methods. Most importantly, improving microbial safety along with maintaining the sensory and quality properties of the treated foods, especially for perishable products. Hence, this study aimed to investigate the antimicrobial effects of novel dielectric barrier discharge (DBD) and Jet cold plasma systems and their impact on the physicochemical, color, and sensory properties of refrigerated hamburger samples. In the current study, hamburger samples were inoculated with Staphylococcus aureus, Escherichia coli, Molds and Yeasts microbial suspension (~106 CFU/mL), and then were treated with argon (Ar), helium (He), nitrogen (N), and atmosphere (Atm) gases at different times (s) (0, 30, 60, 90, 180, 360). Similarly, uninoculated samples were considered for total viable count (TVC) testing. The results exhibited that plasma system type, gas type, and treatment time had a significant antimicrobial effect with a microbial reduction ranging from 0.01 to 2 log CFU/g and 0.04-1.5 log CFU/g for DBD and Jet plasma systems, respectively. Also, a treatment time longer than 90 s for DBD and 180 s for jet resulted in a significant reduction in microbial count. The ability of atmospheric cold plasma to inactivate tested foodborne pathogenic bacteria (E. coli and S. aureus) was stronger than other gases because the concentration of O3 and NO gases in atmospheric plasma is higher than other used plasma gases. Surface color measurements (L*, a* and b*) of samples in both methods (DBD and Jet) were not significantly affected. Moreover, samples treated with various plasma gases have indicated insignificant oxidation changes (Thiobarbituric acid assay). These outcomes can assist to reduce microbial contamination and oxidation of hamburgers as a high-consumption and perishable product using ACP technology. Owing to the non-thermal nature of ACP, samples treated with ACP have exhibited no or least effects on the physical, chemical, and sensory features of various food products. As a result, cold plasma innovative technology can be proposed and used as an efficient preservative method to increase the shelf life of food products.


Subject(s)
Anti-Infective Agents , Plasma Gases , Plasma Gases/pharmacology , Plasma Gases/chemistry , Escherichia coli , Staphylococcus aureus , Technology
2.
BMC Biotechnol ; 20(1): 19, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32228563

ABSTRACT

BACKGROUND: Foodborne pathogens and their biofilms are considered as one of the most serious problems in human health and food industry. Moreover, safety of foods is a main global concern because of the increasing use of chemical food additives. Ensuring food safety enhances interest in discovery of new alternative compounds such as antimicrobial peptides (AMPs), which can be used as bio-preservatives in the food industry. In this study, the most important antimicrobial peptides of camel milk lactoferrin (lactoferrampin and lactoferricin) were recombinantly expressed in the form of chimeric peptide (cLFchimera) in a food-grade L. lactis strain. P170 expression system was used to express secreted cLFchimera using pAMJ1653 expression vector which harbors a safe (non-antibiotic) selectable marker. RESULTS: Peptide purification was carried out using Ni-NTA agarose column from culture medium with concentration of 0.13 mg/mL. The results of disk diffusion test revealed that cLFchimera had considerable antimicrobial activity against a number of major foodborne bacteria. Furthermore, this chimeric peptide showed strong and weak inhibitory effect on biofilm formation against P. aeruginosa, S. aureus E. faecalis, and E. coli, respectively. Antioxidant activity and thermal stability of the chimeric peptide was determined. The results showed that cLFchimera had antioxidant activity (IC50: 310 µ/mL) and its activity was not affected after 40 min of boiling. Finally, we evaluated the interaction of the peptide with LPS and DNA in bacteria using molecular dynamic simulation as two main intra and extra cellular targets for AMPs, respectively. Our in silico analysis showed that cLFchimera had strong affinity to both of these targets by positive charged residues after 50 ns molecular dynamic simulation. CONCLUSIONS: Overall, the engineered food-grade L. lactis generated in the present study successfully expressed a secreted chimeric peptide with antimicrobial properties and could be considered as a promising bio-preservative in the food industry.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Lactococcus lactis/growth & development , Lactoferrin/chemistry , Peptide Fragments/chemistry , Protein Engineering/methods , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Camelus , Computer Simulation , Disk Diffusion Antimicrobial Tests , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Food Microbiology , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
3.
BMC Genomics ; 21(1): 60, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31959108

ABSTRACT

BACKGROUND: Lactoferrampin (LFampin), Lactoferricin (LFcin), and LFchimera are three well-known antimicrobial peptides derived from Lactoferrin and proposed as alternatives for antibiotics. Although the intracellular activity of these peptides has been previously demonstrated, their mode of action is not yet fully understood. Here, we performed a molecular dynamics simulation study to understand the molecular interactions between camel Lactoferrin derived peptides, including CLFampin, CLFcin, and CLFchimera, and DNA as an important intracellular target. RESULTS: Our results indicate that all three peptides bind to DNA, albeit with different propensities, with CLFchimera showing the highest binding affinity. The secondary structures of the peptides, modeled on Lactoferrin, did not undergo significant changes during simulation, supporting their functional relevance. Main residues involved in the peptide-DNA interaction were identified based on binding free energy estimates calculated over 200 ns, which, as expected, confirmed strong electrostatic interactions between DNA phosphate groups and positively charged peptide side chains. Interaction between the different concentrations of CLFchimera and DNA revealed that after binding of four copies of CLFchimera to DNA, hydrogen bonds between the two strands of DNA start to break from one of the termini. CONCLUSIONS: Importantly, our results revealed that there is no DNA-sequence preference for peptide binding, in line with a broad antimicrobial activity. Moreover, the results showed that the strength of the interaction between DNA and CLFchimera is concentration dependent. The insight provided by these results can be used for the rational redesign of natural antimicrobial peptides targeting the bacterial DNA.


Subject(s)
DNA, B-Form/chemistry , Lactoferrin/chemistry , Peptides/chemistry , Hydrogen Bonding , Lactoferrin/genetics , Molecular Dynamics Simulation , Nucleic Acid Conformation , Recombinant Fusion Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL