Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1411341, 2024.
Article in English | MEDLINE | ID: mdl-38863555

ABSTRACT

Fruit development can be viewed as the succession of three main steps consisting of the fruit initiation, growth and ripening. These processes are orchestrated by different factors, notably the successful fertilization of flowers, the environmental conditions and the hormones whose action is coordinated by a large variety of transcription factors. Among the different transcription factor families, TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR (TCP) family has received little attention in the frame of fruit biology despite its large effects on several developmental processes and its action as modulator of different hormonal pathways. In this respect, the comprehension of TCP functions in fruit development remains an incomplete puzzle that needs to be assembled. Building on the abundance of genomic and transcriptomic data, this review aims at collecting available TCP expression data to allow their integration in the light of the different functional genetic studies reported so far. This reveals that several Class I TCP genes, already known for their involvement in the cell proliferation and growth, display significant expression levels in developing fruit, although clear evidence supporting their functional significance in this process remains scarce. The extensive expression data compiled in our study provide convincing elements that shed light on the specific involvement of Class I TCP genes in fruit ripening, once these reproductive organs acquire their mature size. They also emphasize their putative role in the control of specific biological processes such as fruit metabolism and hormonal dialogue.

2.
Proc Natl Acad Sci U S A ; 121(23): e2403750121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805269

ABSTRACT

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous Vitis vinifera cultivars by combining high-fidelity long-read sequencing and high-throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar. The deletions/insertions, inversions, translocations, and duplications provide insight into the evolutionary history and parental relationship among grape varieties. Integration of de novo single long-read sequencing of full-length transcript isoforms (Iso-Seq) yielded a highly improved genome annotation. Given its higher contiguity, and the robustness of the IsoSeq-based annotation, the Chasselas assembly meets the standard to become the annotated reference genome for V. vinifera. Building on these resources, we developed VitExpress, an open interactive transcriptomic platform, that provides a genome browser and integrated web tools for expression profiling, and a set of statistical tools (StatTools) for the identification of highly correlated genes. Implementation of the correlation finder tool for MybA1, a major regulator of the anthocyanin pathway, identified candidate genes associated with anthocyanin metabolism, whose expression patterns were experimentally validated as discriminating between black and white grapes. These resources and innovative tools for mining genome-related data are anticipated to foster advances in several areas of grapevine research.


Subject(s)
Genome, Plant , Haplotypes , Transcriptome , Vitis , Vitis/genetics , Haplotypes/genetics , Transcriptome/genetics , Molecular Sequence Annotation/methods , Gene Expression Profiling/methods , Software
3.
Nat Commun ; 15(1): 2894, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570494

ABSTRACT

Steroidal glycoalkaloids (SGAs) are major plant defense metabolites against pests, while they are considered poisonous in food. The genetic basis that guides negative selection of SGAs production during tomato domestication remains poorly understood. Here, we identify a distal enhancer, GAME Enhancer 1 (GE1), as the key regulator of SGAs metabolism in tomato. GE1 recruits MYC2-GAME9 transcriptional complex to regulate the expression of GAME cluster genes via the formation of chromatin loops located in the neighboring DNA region. A naturally occurring GE176 allelic variant is found to be more active in stimulating GAME expression. We show that the weaker GE1 allele has been the main driver for selecting reduced SGAs levels during tomato domestication. Unravelling the "TFs-Enhancer-Promoter" regulatory mechanism operating in SGAs metabolism opens unprecedented prospects for SGAs manipulation in Solanaceae via precision breeding strategies.


Subject(s)
Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genetics , Domestication , Plant Breeding , Steroids
4.
Dev Cell ; 59(10): 1345-1359.e6, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38579721

ABSTRACT

The plant cell wall is a dynamic structure that plays an essential role in development, but the mechanism regulating cell wall formation remains poorly understood. We demonstrate that two transcription factors, SlERF.H5 and SlERF.H7, control cell wall formation and tomato fruit firmness in an additive manner. Knockout of SlERF.H5, SlERF.H7, or both genes decreased cell wall thickness, firmness, and cellulose contents in fruits during early development, especially in double-knockout lines. Overexpressing either gene resulted in thicker cell walls and greater fruit firmness with elevated cellulose levels in fruits but severely dwarf plants with lower gibberellin contents. We further identified that SlERF.H5 and SlERF.H7 activate the cellulose biosynthesis gene SlCESA3 but repress the gibberellin biosynthesis gene GA20ox1. Moreover, we identified a conserved LPL motif in these ERFs responsible for their activities as transcriptional activators and repressors, providing insight into how bifunctional transcription factors modulate distinct developmental processes.


Subject(s)
Cell Wall , Fruit , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Gibberellins/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Cellulose/metabolism , Cellulose/biosynthesis , Plants, Genetically Modified/metabolism , Conserved Sequence , Amino Acid Motifs
5.
J Integr Plant Biol ; 66(6): 1227-1241, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38546046

ABSTRACT

Carotenoids are important nutrients for human health that must be obtained from plants since they cannot be biosynthesized by the human body. Dissecting the regulatory mechanism of carotenoid metabolism in plants represents the first step toward manipulating carotenoid contents in plants by molecular design breeding. In this study, we determined that SlAP2c, an APETALA2 (AP2) family member, acts as a transcriptional repressor to regulate carotenoid biosynthesis in tomato (Solanum lycopersicum). Knockout of SlAP2c in both the "MicroTom" and "Ailsa Craig" backgrounds resulted in greater lycopene accumulation, whereas overexpression of this gene led to orange-ripe fruit with significantly lower lycopene contents than the wild type. We established that SlAP2c represses the expression of genes involved in lycopene biosynthesis by directly binding to the cis-elements in their promoters. Moreover, SlAP2c relies on its EAR motif to recruit the co-repressors TOPLESS (TPL)2/4 and forms a complex with histone deacetylase (had)1/3, thereby reducing the histone acetylation levels of lycopene biosynthesis genes. Furthermore, SlAP2a, a homolog of SlAP2c, acts upstream of SlAP2c and alleviates the SlAP2c-induced repression of lycopene biosynthesis genes by inhibiting SlAP2c transcription during fruit ripening. Therefore, we identified a transcriptional cascade mediated by AP2 family members that regulates lycopene biosynthesis during fruit ripening in tomato, laying the foundation for the manipulation of carotenoid metabolism in plants.


Subject(s)
Carotenoids , Gene Expression Regulation, Plant , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Carotenoids/metabolism , Lycopene/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Fruit/metabolism , Fruit/genetics , Transcription, Genetic
6.
New Phytol ; 242(2): 592-609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402567

ABSTRACT

The plant hormone ethylene plays a critical role in fruit defense against Botrytis cinerea attack, but the underlying mechanisms remain poorly understood. Here, we showed that ethylene response factor SlERF.C1 acts as a key regulator to trigger the ethylene-mediated defense against B. cinerea in tomato fruits without compromising ripening. Knockout of SlERF.C1 increased fruit susceptibility to B. cinerea with no effect on ripening process, while overexpression enhanced resistance. RNA-Seq, transactivation assays, EMSA and ChIP-qPCR results indicated that SlERF.C1 activated the transcription of PR genes by binding to their promoters. Moreover, SlERF.C1 interacted with the mitogen-activated protein kinase SlMPK8 which allowed SlMPK8 to phosphorylate SlERF.C1 at the Ser174 residue and increases its transcriptional activity. Knocking out of SlMPK8 increased fruit susceptibility to B. cinerea, whereas overexpression enhanced resistance without affecting ripening. Furthermore, genetic crosses between SlMPK8-KO and SlERF.C1-OE lines reduced the resistance to B. cinerea attack in SlERF.C1-OE fruits. In addition, B. cinerea infection induced ethylene production which in turn triggered SlMPK8 transcription and enhanced the phosphorylation of SlERF.C1. Overall, our findings reveal the regulatory mechanism of the 'Ethylene-MPK8-ERF.C1-PR' module in resistance against B. cinerea and provide new insight into the manipulation of gray mold disease in fruits.


Subject(s)
Fruit , Solanum lycopersicum , Fruit/metabolism , Solanum lycopersicum/genetics , Ethylenes/metabolism , Botrytis/physiology , Plant Diseases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant
7.
Plant J ; 118(4): 997-1015, 2024 May.
Article in English | MEDLINE | ID: mdl-38281284

ABSTRACT

Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.


Subject(s)
Endoreduplication , Fruit , Gene Expression Regulation, Plant , Ploidies , Solanum lycopersicum , Transcriptome , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Endoreduplication/genetics , Gene Expression Profiling , Cell Division/genetics
8.
BMC Plant Biol ; 23(1): 495, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37833639

ABSTRACT

The SHI RELATED SEQUENCE (SRS) family plays a vital role in the development of multiple plant organs such as floral meristem determinacy, organ morphogenesis, and signal transduction. Nevertheless, there is little understanding of the biological significance of tomato SRS family at this point. Our research identified eight SlSRS family members and classified them into three subfamilies based on phylogenetics, conserved motifs, and characteristic domain analysis. The intraspecies and interspecies collinearity analysis revealed clues of SRS family evolution. Many cis-elements related to hormones, stresses, and plant development can be found in the promoter region of SlSRS genes. All of eight SlSRS proteins were located in the nucleus and possessed transcriptional activity, half of which were transcriptional activators, and the other half were transcriptional repressors. Except for SlSRS1, which showed high transcript accumulation in vegetative organs, most SlSRS genes expressed ubiquitously in all flower organs. In addition, all SlSRS genes could significantly respond to at least four different plant hormones. Further, expression of SlSRS genes were regulated by various abiotic stress conditions. In summary, we systematically analyzed and characterized the SlSRS family, reviewed the expression patterns and preliminarily investigated the protein function, and provided essential information for further functional research of the tomato SRS genes in the determination of reproductive floral organs and the development of plants, and possibly other plants.


Subject(s)
Solanum lycopersicum , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Solanum lycopersicum/genetics , Gene Expression Regulation, Plant , Multigene Family , Hormones , Stress, Physiological/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
9.
J Agric Food Chem ; 71(36): 13554-13565, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37638888

ABSTRACT

In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L-1 with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit. However, selenium enrichment had an influence on both the primary and secondary metabolic processes and thus the biochemical composition of ripe tomatoes. Selenium decreased the amount of ß-carotene, increased the accumulation of naringenin and chlorogenic acid, and decreased the coumaric acid level. Selenium also affected the volatile organic compound profile, with changes in the level of specific apocarotenoid compounds, such as ß-ionone. These metabolomic changes may, to some extent, be due to the impact of selenium treatment on the transcription of genes involved in the metabolism of these compounds. RNA-seq analysis showed that the selenium application mostly impacted the expression of the genes involved in hormonal signaling, secondary metabolism, flavonoid biosynthesis, and glycosaminoglycan degradation.


Subject(s)
Selenium , Solanum lycopersicum , Solanum lycopersicum/genetics , Biofortification , Fruit/genetics , Metabolome
10.
Plant Physiol ; 191(1): 610-625, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36200876

ABSTRACT

Ripening is the last stage of the developmental program in fleshy fruits. During this phase, fruits become edible and acquire their unique sensory qualities and post-harvest potential. Although our knowledge of the mechanisms that regulate fruit ripening has improved considerably over the past decades, the processes that trigger the transition to ripening remain poorly deciphered. While transcriptomic profiling of tomato (Solanum lycopersicum L.) fruit ripening to date has mainly focused on the changes occurring in pericarp tissues between the Mature Green and Breaker stages, our study addresses the changes between the Early Mature Green and Late Mature Green stages in the gel and pericarp separately. The data showed that the shift from an inability to initiate ripening to the capacity to undergo full ripening requires extensive transcriptomic reprogramming that takes place first in the locular tissues before extending to the pericarp. Genome-wide transcriptomic profiling revealed the wide diversity of transcription factor (TF) families engaged in the global reprogramming of gene expression and identified those specifically regulated at the Mature Green stage in the gel but not in the pericarp, thereby providing potential targets toward deciphering the initial factors and events that trigger the transition to ripening. The study also uncovered an extensive reformed homeostasis for most plant hormones, highlighting the multihormonal control of ripening initiation. Our data unveil the antagonistic roles of ethylene and auxin during the onset of ripening and show that auxin treatment delays fruit ripening via impairing the expression of genes required for System-2 autocatalytic ethylene production that is essential for climacteric ripening. This study unveils the detailed features of the transcriptomic reprogramming associated with the transition to ripening of tomato fruit and shows that the first changes occur in the locular gel before extending to pericarp and that a reformed auxin homeostasis is essential for the ripening to proceed.


Subject(s)
Solanum lycopersicum , Humans , Solanum lycopersicum/genetics , Ethylenes/metabolism , Plant Growth Regulators/metabolism , Fruit/genetics , Fruit/metabolism , Indoleacetic Acids/metabolism , Hormones/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism
11.
Plant Cell ; 34(4): 1250-1272, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35099538

ABSTRACT

Ethylene response factors (ERFs) are downstream components of ethylene-signaling pathways known to play critical roles in ethylene-controlled climacteric fruit ripening, yet little is known about the molecular mechanism underlying their mode of action. Here, we demonstrate that SlERF.F12, a member of the ERF.F subfamily containing Ethylene-responsive element-binding factor-associated Amphiphilic Repression (EAR) motifs, negatively regulates the onset of tomato (Solanum lycopersicum) fruit ripening by recruiting the co-repressor TOPLESS 2 (TPL2) and the histone deacetylases (HDAs) HDA1/HDA3 to repress the transcription of ripening-related genes. The SlERF.F12-mediated transcriptional repression of key ripening-related genes 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2 (ACS2), ACS4, POLYGALACTURONASE 2a, and PECTATE LYASE is dependent on the presence of its C-terminal EAR motif. We show that SlERF.F12 interacts with the co-repressor TPL2 via the C-terminal EAR motif and recruits HDAs SlHDA1 and SlHDA3 to form a tripartite complex in vivo that actively represses transcription of ripening genes by decreasing the level of the permissive histone acetylation marks H3K9Ac and H3K27Ac at their promoter regions. These findings provide new insights into the ripening regulatory network and uncover a direct link between repressor ERFs and histone modifiers in modulating the transition to ripening of climacteric fruit.


Subject(s)
Solanum lycopersicum , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Ethylenes/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
12.
New Phytol ; 233(1): 373-389, 2022 01.
Article in English | MEDLINE | ID: mdl-34255862

ABSTRACT

Soluble sugars, organic acids and volatiles are important components that determine unique fruit flavor and consumer preferences. However, the metabolic dynamics and underlying regulatory networks that modulate overall flavor formation during fruit development and ripening remain largely unknown for most fruit species. In this study, by integrating flavor-associated metabolism and transcriptome data from 12 fruit developmental and ripening stages of Actinidia chinensis cv Hongyang, we generated a global map of changes in the flavor-related metabolites throughout development and ripening of kiwifruit. Using this dataset, we constructed complex regulatory networks allowing to identify key structural genes and transcription factors that regulate the metabolism of soluble sugars, organic acids and important volatiles in kiwifruit. Moreover, our study revealed the regulatory mechanism involving key transcription factors regulating flavor metabolism. The modulation of flavor metabolism by the identified key transcription factors was confirmed in different kiwifruit species providing the proof of concept that our dataset provides a suitable tool for clarification of the regulatory factors controlling flavor biosynthetic pathways that have not been previously illuminated. Overall, in addition to providing new insight into the metabolic regulation of flavor during fruit development and ripening, the outcome of our study establishes a foundation for flavor improvement in kiwifruit.


Subject(s)
Actinidia , Actinidia/genetics , Actinidia/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Metabolome , Plant Proteins/metabolism , Transcriptome/genetics
13.
Nat Commun ; 12(1): 6892, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824241

ABSTRACT

All-flesh tomato cultivars are devoid of locular gel and exhibit enhanced firmness and improved postharvest storage. Here, we show that SlMBP3 is a master regulator of locular tissue in tomato fruit and that a deletion at the gene locus underpins the All-flesh trait. Intriguingly, All-flesh varieties lack the deleterious phenotypes reported previously for SlMBP3 under-expressing lines and which preclude any potential commercial use. We resolve the causal factor for this phenotypic divergence through the discovery of a natural mutation at the SlAGL11 locus, a close homolog of SlMBP3. Misexpressing SlMBP3 impairs locular gel formation through massive transcriptomic reprogramming at initial phases of fruit development. SlMBP3 influences locule gel formation by controlling cell cycle and cell expansion genes, indicating that important components of fruit softening are determined at early pre-ripening stages. Our findings define potential breeding targets for improved texture in tomato and possibly other fleshy fruits.


Subject(s)
MADS Domain Proteins/genetics , Plant Proteins/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Cell Proliferation/genetics , Cell Wall/genetics , Fruit/cytology , Fruit/genetics , Fruit/growth & development , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Variation , Solanum lycopersicum/cytology , MADS Domain Proteins/metabolism , Mutation , Phenotype , Plant Proteins/metabolism
14.
Tree Physiol ; 41(7): 1278-1288, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33554256

ABSTRACT

Natural rubber is an important industrial raw material and is commercially produced by rubber trees (Hevea brasiliensis). The sucrose transporter HbSUT3 plays an essential role in rubber production. Its expression in latex (cytoplasm of rubber-producing laticifers) is induced by bark treatment with Ethrel, an ethylene releaser, and the inducing effect correlates well with Ethrel-stimulated rubber yield increase. However, the mechanisms of ethylene induction on HbSUT3 expression are not known. Here, five Ethylene Response Factor (ERF) genes were identified from the cDNA library of Hevea latex by yeast one-hybrid screening with the promoter of HbSUT3 gene as bait. As revealed in a tobacco (Nicotiana tabacum) protoplast transient expression system, these HbERFs were mainly localized in the nucleus and four of them exhibited apparent transactivation activity. Of the five HbERF genes, HbERF-IXc4 was the most frequently screened in yeast one-hybrid, accounting for 65% of the ERF clones obtained. Moreover, among the five HbERFs, HbERF-IXc4 showed the strongest transactivation capacity when expressed in tobacco protoplast, the highest transcript abundance in latex and a close expressional correlation with its target gene, HbSUT3, in response to the Ethrel treatment. Taken together, our results indicate that ERFs, especially HbERF-IXc4, are critically involved in the activation of HbSUT3 expression in latex after Ethrel treatment on Hevea bark, and thus the stimulated latex yield.


Subject(s)
Hevea , Ethylenes , Gene Expression Regulation, Plant , Hevea/genetics , Hevea/metabolism , Latex , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose
15.
Plant Physiol ; 184(2): 1153-1171, 2020 10.
Article in English | MEDLINE | ID: mdl-32694134

ABSTRACT

Ethylene plays a critical regulatory role in climacteric fruit ripening, and its biosynthesis is fine-tuned at the transcriptional and posttranslational levels. Nevertheless, the mechanistic link between transcriptional and posttranslational regulation of ethylene biosynthesis during fruit ripening is largely unknown. This study uncovers a coordinated transcriptional and posttranslational mechanism of controlling ethylene biosynthesis during banana (Musa acuminata) fruit ripening. NAC (NAM, ATAF, and CUC) proteins MaNAC1 and MaNAC2 repress the expression of MaERF11, a protein previously known to negatively regulate ethylene biosynthesis genes MaACS1 and MaACO1 A RING E3 ligase MaXB3 interacts with MaNAC2 to promote its ubiquitination and degradation, leading to the inhibition of MaNAC2-mediated transcriptional repression. In addition, MaXB3 also targets MaACS1 and MaACO1 for proteasome degradation. Further evidence supporting the role of MaXB3 is provided by its transient and ectopic overexpression in banana fruit and tomato (Solanum lycopersicum), respectively, which delays fruit ripening via repressing ethylene biosynthesis and thus ethylene response. Strikingly, MaNAC1 and MaNAC2 directly repress MaXB3 expression, suggesting a feedback regulatory mechanism that maintains a balance of MaNAC2, MaACS1, and MaACO1 levels. Collectively, our findings establish a multilayered regulatory cascade involving MaXB3, MaNACs, MaERF11, and MaACS1/MaACO1 that controls ethylene biosynthesis during climacteric ripening.


Subject(s)
Ethylenes/biosynthesis , Fruit/growth & development , Fruit/genetics , Fruit/metabolism , Musa/growth & development , Musa/genetics , Musa/metabolism , China , Gene Expression Regulation, Plant/drug effects , Genes, Plant
16.
J Exp Bot ; 71(12): 3450-3462, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32133496

ABSTRACT

Trichomes are epidermal protuberances on aerial parts of plants known to play an important role in biotic and abiotic stresses. To date, our knowledge of the regulation of trichome formation in crop species is very limited. Through phenotyping of the Solanum pennellii×S. lycopersicum (cv. M82) introgression population, we identified the SlbHLH95 transcription factor as a negative regulator of trichome formation in tomato. In line with this negative role, SlbHLH95 displayed a very low expression in stems where trichomes are present at high density. Overexpression of SlbHLH95 resulted in a dramatically reduced trichome density in stems and a significant down-regulation of a set of trichome-related genes. In addition to the lower trichome density, overexpressing lines also showed pleiotropic alterations affecting both vegetative and reproductive development. While most of these phenotypes were reminiscent of gibberellin (GA)-deficient phenotypes, expression studies showed that two GA biosynthesis genes, SlGA20ox2 and SlKS5, are significantly down-regulated in SlbHLH95-OE plants. Moreover, in line with a decrease in active GA content, the glabrous and dwarf phenotypes were rescued by exogenous GA treatment. In addition, yeast one-hybrid and transactivation assays revealed that SlbHLH95 represses the expression of SlGA20ox2 and SlKS5 via direct binding to their promoters. Taken together, our study established a link between SlbHLH95, GA, and trichome formation, and uncovered the role of this gene in modulating GA biosynthesis in tomato.


Subject(s)
Solanum lycopersicum , Trichomes , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Gibberellins , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Trichomes/genetics , Trichomes/metabolism
17.
New Phytol ; 227(2): 485-497, 2020 07.
Article in English | MEDLINE | ID: mdl-32181875

ABSTRACT

Polycomb group (PcG) proteins play vital roles in plant development via epigenetically repressing the transcription of target genes. However, to date, their function in fruit ripening is largely unknown. Combining reverse genetic approaches, physiological methods, yeast two-hybrid, co-immunoprecipitation, and chromatin immunoprecipitation assays, we show that Like Heterochromatin Protein 1b (SlLHP1b), a tomato Polycomb Repressive Complex 1 (PRC1)-like protein with a ripening-related expression pattern, represses fruit ripening via colocalization with epigenetic mark H3K27me3. RNA interference (RNAi)-mediated downregulation of SlLHP1b advanced ripening initiation, climacteric ethylene production, and fruit softening, whereas SlLHP1b overexpression delayed these events. Ripening-related genes were significantly upregulated in SlLHP1b RNAi fruits and downregulated in overexpressing fruits compared with wild-type. Furthermore, SlLHP1b protein interacts with ripening regulator MSI1, a subunit of the PRC2 complex. Moreover, SlLHP1b also binds the epigenetic histone mark H3K27me3 in vivo and chromatin immunoprecipitation-quantitative PCR results showed binding occurs preferentially to regions of ripening-associated chromatin marked by histone H3K27me3. Furthermore, the H3K27me3 levels in chromatin of ripening-related genes is negatively correlated with accumulation of their transcripts in SlLHP1b down or upregulated fruits during ripening. Our findings reveal a novel regulatory function of SlLHP1b in fruit and provide new insights into the PcG-mediated epigenetic regulation of climacteric fruit ripening.


Subject(s)
Solanum lycopersicum , Epigenesis, Genetic , Ethylenes , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Heterochromatin/genetics , Histones , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism
18.
New Phytol ; 226(2): 460-475, 2020 04.
Article in English | MEDLINE | ID: mdl-31814125

ABSTRACT

RIPENING INHIBITOR (RIN)-deficient fruits generated by CRISPR/Cas9 initiated partial ripening at a similar time to wild-type (WT) fruits but only 10% WT concentrations of carotenoids and ethylene (ET) were synthesized. RIN-deficient fruit never ripened completely, even when supplied with exogenous ET. The low amount of endogenous ET that they did produce was sufficient to enable ripening initiation and this could be suppressed by the ET perception inhibitor 1-MCP. The reduced ET production by RIN-deficient tomatoes was due to an inability to induce autocatalytic system-2 ET synthesis, a characteristic feature of climacteric ripening. Production of volatiles and transcripts of key volatile biosynthetic genes also were greatly reduced in the absence of RIN. By contrast, the initial extent and rates of softening in the absence of RIN were similar to WT fruits, although detailed analysis showed that the expression of some cell wall-modifying enzymes was delayed and others increased in the absence of RIN. These results support a model where RIN and ET, via ERFs, are required for full expression of ripening genes. Ethylene initiates ripening of mature green fruit, upregulates RIN expression and other changes, including system-2 ET production. RIN, ET and other factors are required for completion of the full fruit-ripening programme.


Subject(s)
Solanum lycopersicum , Ethylenes , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , MADS Domain Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
19.
New Phytol ; 222(2): 820-836, 2019 04.
Article in English | MEDLINE | ID: mdl-30511456

ABSTRACT

Ethylene is the main hormone controlling climacteric fruit ripening; however, the mechanisms underlying the developmental transition leading to the initiation of the ripening process remain elusive, although the presumed role of active hormone interplay has often been postulated. To unravel the putative role of auxin in the unripe-to-ripe transition, we investigated the dynamics of auxin activity in tomato fruit and addressed the physiological significance of Sl-SAUR69, previously identified as a RIN target gene, using reverse genetics approaches. Auxin signalling undergoes dramatic decline at the onset of ripening in wild-type fruit, but not in the nonripening rin mutant. Sl-SAUR69 exhibits reduced expression in rin and its up-regulation results in premature initiation of ripening, whereas its down-regulation extends the time to ripening. Overexpression of Sl-SAUR69 reduces proton pump activity and polar auxin transport, and ectopic expression in Arabidopsis alters auxin transporter abundance, further arguing for its active role in the regulation of auxin transport. The data support a model in which Sl-SAUR69 represses auxin transport, thus generating auxin minima, which results in enhanced ethylene sensitivity. This defines a regulation loop, fed by ethylene and auxin as the main hormonal signals and by RIN and Sl-SAUR69 as modulators of the balance between the two hormones.


Subject(s)
Ethylenes/pharmacology , Fruit/growth & development , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , RNA, Plant/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Arabidopsis/metabolism , Biological Transport/drug effects , Down-Regulation/drug effects , Fruit/drug effects , Fruit/genetics , Gene Expression Regulation, Plant/drug effects , Solanum lycopersicum/drug effects , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Proton Pumps/metabolism , Signal Transduction , Transcription, Genetic/drug effects , Up-Regulation/drug effects
20.
Plant Sci ; 274: 137-145, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30080597

ABSTRACT

Plants are sessile organisms, hence to face environmental constrains they developed strategies that rely on the activation of stress-response genes under the control of specific transcription factors. The plant hormone ethylene mediates physiological, developmental and stress responses through the activation of Ethylene Response Factors (ERFs) which belong to a large multigene family of transcription factors. While an increasing number of studies supports the involvement of ERFs in abiotic stress responses, so far the specific role of ERF family members in different abiotic stress conditions remains unexplored. The present work investigates the expression profile of a set of ERFs, representative of different ERF types, in tomato plants subjected to cold, heat, salt, drought and flooding conditions. The study revealed that a group of ERFs is preferentially associated with cold and heat stress responses while another set is expressed in response to salt, water and flooding stresses. Transactivation assays indicated that ERFs can regulate the expression of abiotic stress genes regardless of whether or not they harbor conserved GCC or DRE cis-elements in their promoter region. The outcome of the study provides clue on which ERFs should be targeted when aiming to improve adaptation to a particular stress type.


Subject(s)
Plant Proteins/physiology , Solanum lycopersicum/metabolism , Stress, Physiological , Transcription Factors/physiology , Cold-Shock Response , Ethylenes/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Salt Tolerance , Stress, Physiological/physiology , Transcription Factors/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...