Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Neurosurgery ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771081

ABSTRACT

BACKGROUND AND OBJECTIVES: Guideline recommendations for surgical management of traumatic epidural hematomas (EDHs) do not directly address EDHs that co-occur with other intracranial hematomas; the relative rates of isolated vs nonisolated EDHs and guideline adherence are unknown. We describe characteristics of a contemporary cohort of patients with EDHs and identify factors influencing acute surgery. METHODS: This research was conducted within the longitudinal, observational Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury cohort study which prospectively enrolled patients with traumatic brain injury from 65 hospitals in 18 European countries from 2014 to 2017. All patients with EDH on the first scan were included. We describe clinical, imaging, management, and outcome characteristics and assess associations between site and baseline characteristics and acute EDH surgery, using regression modeling. RESULTS: In 461 patients with EDH, median age was 41 years (IQR 24-56), 76% were male, and median EDH volume was 5 cm3 (IQR 2-20). Concomitant acute subdural hematomas (ASDHs) and/or intraparenchymal hemorrhages were present in 328/461 patients (71%). Acute surgery was performed in 99/461 patients (21%), including 70/86 with EDH volume ≥30 cm3 (81%). Larger EDH volumes (odds ratio [OR] 1.19 [95% CI 1.14-1.24] per cm3 below 30 cm3), smaller ASDH volumes (OR 0.93 [95% CI 0.88-0.97] per cm3), and midline shift (OR 6.63 [95% CI 1.99-22.15]) were associated with acute surgery; between-site variation was observed (median OR 2.08 [95% CI 1.01-3.48]). Six-month Glasgow Outcome Scale-Extended scores ≥5 occurred in 289/389 patients (74%); 41/389 (11%) died. CONCLUSION: Isolated EDHs are relatively infrequent, and two-thirds of patients harbor concomitant ASDHs and/or intraparenchymal hemorrhages. EDHs ≥30 cm3 are generally evacuated early, adhering to Brain Trauma Foundation guidelines. For heterogeneous intracranial pathology, surgical decision-making is related to clinical status and overall lesion burden. Further research should examine the optimal surgical management of EDH with concomitant lesions in traumatic brain injury, to inform updated guidelines.

2.
J Neurotrauma ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38482818

ABSTRACT

In 2010, the National Institute of Neurological Disorders and Stroke (NINDS) created a set of common data elements (CDEs) to help standardize the assessment and reporting of imaging findings in traumatic brain injury (TBI). However, as opposed to other standardized radiology reporting systems, a visual overview and data to support the proposed standardized lexicon are lacking. We used over 4000 admission computed tomography (CT) scans of patients with TBI from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study to develop an extensive pictorial overview of the NINDS TBI CDEs, with visual examples and background information on individual pathoanatomical lesion types, up to the level of supplemental and emerging information (e.g., location and estimated volumes). We documented the frequency of lesion occurrence, aiming to quantify the relative importance of different CDEs for characterizing TBI, and performed a critical appraisal of our experience with the intent to inform updating of the CDEs. In addition, we investigated the co-occurrence and clustering of lesion types and the distribution of six CT classification systems. The median age of the 4087 patients in our dataset was 50 years (interquartile range, 29-66; range, 0-96), including 238 patients under 18 years old (5.8%). Traumatic subarachnoid hemorrhage (45.3%), skull fractures (37.4%), contusions (31.3%), and acute subdural hematoma (28.9%) were the most frequently occurring CT findings in acute TBI. The ranking of these lesions was the same in patients with mild TBI (baseline Glasgow Coma Scale [GCS] score 13-15) compared with those with moderate-severe TBI (baseline GCS score 3-12), but the frequency of occurrence was up to three times higher in moderate-severe TBI. In most TBI patients with CT abnormalities, there was co-occurrence and clustering of different lesion types, with significant differences between mild and moderate-severe TBI patients. More specifically, lesion patterns were more complex in moderate-severe TBI patients, with more co-existing lesions and more frequent signs of mass effect. These patients also had higher and more heterogeneous CT score distributions, associated with worse predicted outcomes. The critical appraisal of the NINDS CDEs was highly positive, but revealed that full assessment can be time consuming, that some CDEs had very low frequencies, and identified a few redundancies and ambiguity in some definitions. Whilst primarily developed for research, implementation of CDE templates for use in clinical practice is advocated, but this will require development of an abbreviated version. In conclusion, with this study, we provide an educational resource for clinicians and researchers to help assess, characterize, and report the vast and complex spectrum of imaging findings in patients with TBI. Our data provides a comprehensive overview of the contemporary landscape of TBI imaging pathology in Europe, and the findings can serve as empirical evidence for updating the current NINDS radiologic CDEs to version 3.0.

3.
J Neurosurg ; : 1-13, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489823

ABSTRACT

OBJECTIVE: The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients. METHODS: The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI. Data were extracted from the subjects who met the model criteria (for IMPACT, Glasgow Coma Scale [GCS] score 3-12 with 6-month Glasgow Outcome Scale-Extended [GOSE] data [n = 441]; for CRASH, GCS score 3-14 with 2-week mortality data and 6-month GOSE data [n = 831]). Analyses were conducted in the overall cohort and stratified on the basis of TBI severity (severe/moderate/mild TBI defined as GCS score 3-8/9-12/13-14), age (17-64 years or ≥ 65 years), and the 5 top enrolling sites. Unfavorable outcome was defined as GOSE score 1-4. Original IMPACT and CRASH model coefficients were applied, and model performances were assessed by calibration (intercept [< 0 indicated overprediction; > 0 indicated underprediction] and slope) and discrimination (c-statistic). RESULTS: Overall, the IMPACT models overpredicted mortality (intercept -0.79 [95% CI -1.05 to -0.53], slope 1.37 [1.05-1.69]) and acceptably predicted unfavorable outcome (intercept 0.07 [-0.14 to 0.29], slope 1.19 [0.96-1.42]), with good discrimination (c-statistics 0.84 and 0.83, respectively). The CRASH models overpredicted mortality (intercept -1.06 [-1.36 to -0.75], slope 0.96 [0.79-1.14]) and unfavorable outcome (intercept -0.60 [-0.78 to -0.41], slope 1.20 [1.03-1.37]), with good discrimination (c-statistics 0.92 and 0.88, respectively). IMPACT overpredicted mortality and acceptably predicted unfavorable outcome in the severe and moderate TBI subgroups, with good discrimination (c-statistic ≥ 0.81). CRASH overpredicted mortality in the severe and moderate TBI subgroups and acceptably predicted mortality in the mild TBI subgroup, with good discrimination (c-statistic ≥ 0.86); unfavorable outcome was overpredicted in the severe and mild TBI subgroups with adequate discrimination (c-statistic ≥ 0.78), whereas calibration was nonlinear in the moderate TBI subgroup. In subjects ≥ 65 years of age, the models performed variably (IMPACT-mortality, intercept 0.28, slope 0.68, and c-statistic 0.68; CRASH-unfavorable outcome, intercept -0.97, slope 1.32, and c-statistic 0.88; nonlinear calibration for IMPACT-unfavorable outcome and CRASH-mortality). Model performance differences were observed across the top enrolling sites for mortality and unfavorable outcome. CONCLUSIONS: The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome. Observed overestimations of mortality and unfavorable outcome underscore the need to update prognostic models to incorporate contemporary changes in TBI management and case-mix. Investigations to elucidate the relationships between increased survival, outcome, treatment intensity, and site-specific practices will be relevant to improve models in specific TBI subpopulations (e.g., older adults), which may benefit from the inclusion of blood-based biomarkers, neuroimaging features, and treatment data.

4.
J Neurotrauma ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38279804

ABSTRACT

Traumatic brain injury (TBI) is a leading global cause of morbidity and mortality. Intracranial hypertension following moderate-to-severe TBI (m-sTBI) is a potentially modifiable secondary cerebral insult and one of the central therapeutic targets of contemporary neurocritical care. External ventricular drain (EVD) insertion is a common therapeutic intervention used to control intracranial hypertension and attenuate secondary brain injury. However, the optimal timing of EVD insertion in the setting of m-sTBI is uncertain and practice variation is widespread. Therefore, we aimed to assess if there is an association between timing of EVD placement and functional neurological outcome at 6 months post m-sTBI. We pooled individual patient data for all relevant harmonizable variables from the Erythropoietin in Traumatic Brain Injury (EPO-TBI) and Prophylactic Hypothermia Trial to Lessen Traumatic Brain Injury (POLAR) randomized control trials, and the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) Core Study version 3.0 and Australia-Europe NeuroTrauma Effectiveness Research in TBI (Oz-ENTER) prospective observational studies to create a combined dataset. The Glasgow Coma Scale (GCS) score was used to define TBI severity and we included all patients admitted to an intensive care unit with a GCS ≤12, who were 15 years or older and underwent EVD placement within 7 days of injury. We used hierarchical multi-variable logistic regression models to study the association between EVD insertion within 24 h of injury (early) compared with EVD insertion more than 24 h after injury (late) and 6-month functional neurological outcome measured using the Glasgow Outcome Score Extended (GOSE). In total, 2536 patients were assessed. Of these, 502 (20%) underwent early EVD insertion and 145 (6%) underwent late EVD insertion. Following adjustment for the IMPACT (International Mission for Prognosis and Analysis of Clinical Trials in TBI) score extended (Core + CT), sex, injury severity score, study and treatment site, patients receiving a late EVD had higher odds of death or severe disability (GOSE 1-4) at 6 months follow-up than those receiving an early EVD adjusted odds ratio; 95% confidence interval, 2.14; 1.22-3.76; p = 0.008. Our study suggests that in patients with m-sTBI where an EVD is needed, early (≤ 24 h post-injury) insertion may result in better long-term functional outcomes. This finding supports future prospective investigation in this area.

5.
Acta Neurochir (Wien) ; 165(11): 3217-3227, 2023 11.
Article in English | MEDLINE | ID: mdl-37747570

ABSTRACT

PURPOSE: Evidence regarding the effect of surgery in traumatic intracerebral hematoma (t-ICH) is limited and relies on the STITCH(Trauma) trial. This study is aimed at comparing the effectiveness of early surgery to conservative treatment in patients with a t-ICH. METHODS: In a prospective cohort, we included patients with a large t-ICH (< 48 h of injury). Primary outcome was the Glasgow Outcome Scale Extended (GOSE) at 6 months, analyzed with multivariable proportional odds logistic regression. Subgroups included injury severity and isolated vs. non-isolated t-ICH. RESULTS: A total of 367 patients with a large t-ICH were included, of whom 160 received early surgery and 207 received conservative treatment. Patients receiving early surgery were younger (median age 54 vs. 58 years) and more severely injured (median Glasgow Coma Scale 7 vs. 10) compared to those treated conservatively. In the overall cohort, early surgery was not associated with better functional outcome (adjusted odds ratio (AOR) 1.1, (95% CI, 0.6-1.7)) compared to conservative treatment. Early surgery was associated with better outcome for patients with moderate TBI and isolated t-ICH (AOR 1.5 (95% CI, 1.1-2.0); P value for interaction 0.71, and AOR 1.8 (95% CI, 1.3-2.5); P value for interaction 0.004). Conversely, in mild TBI and those with a smaller t-ICH (< 33 cc), conservative treatment was associated with better outcome (AOR 0.6 (95% CI, 0.4-0.9); P value for interaction 0.71, and AOR 0.8 (95% CI, 0.5-1.0); P value for interaction 0.32). CONCLUSIONS: Early surgery in t-ICH might benefit those with moderate TBI and isolated t-ICH, comparable with results of the STITCH(Trauma) trial.


Subject(s)
Conservative Treatment , Intracranial Hemorrhage, Traumatic , Humans , Middle Aged , Prospective Studies , Glasgow Coma Scale , Hematoma/surgery , Cerebral Hemorrhage/surgery
6.
JAMA Netw Open ; 6(9): e2331798, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37656458

ABSTRACT

Importance: Testing new medical devices or procedures in terms of safety, effectiveness, and durability should follow the strictest methodological rigor before implementation. Objectives: To review and analyze studies investigating devices and procedures used in intracranial aneurysm (IA) treatment for methods and completeness of reporting and to compare the results of studies with positive, uncertain, and negative conclusions. Data Sources: Embase, MEDLINE, Web of Science, and The Cochrane Central Register of Clinical Trials were searched for studies on IA treatment published between January 1, 1995, and the October 1, 2022. Grey literature was retrieved from Google Scholar. Study Selection: All studies making any kind of claims of safety, effectiveness, or durability in the field of IA treatment were included. Data Extraction and Synthesis: Using a predefined data dictionary and analysis plan, variables ranging from patient and aneurysm characteristics to the results of treatment were extracted, as were details pertaining to study methods and completeness of reporting. Extraction was performed by 10 independent reviewers. A blinded academic neuro-linguist without involvement in IA research evaluated the conclusion of each study as either positive, uncertain, or negative. The study followed Preferring Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Main Outcomes and Measures: The incidence of domain-specific outcomes between studies with positive, uncertain, or negative conclusions regarding safety, effectiveness, or durability were compared. The number of studies that provided a definition of safety, effectiveness, or durability and the incidence of incomplete reporting of domain-specific outcomes were evaluated. Results: Overall, 12 954 studies were screened, and 1356 studies were included, comprising a total of 410 993 treated patients. There was no difference in the proportion of patients with poor outcome or in-hospital mortality between studies claiming a technique was safe, uncertain, or not safe. Similarly, there was no difference in the proportion of IAs completely occluded at last follow-up between studies claiming a technique was effective, uncertain, or noneffective. Less than 2% of studies provided any definition of safety, effectiveness, or durability, and only 1 of the 1356 studies provided a threshold under which the technique would be considered unsafe. Incomplete reporting was found in 546 reports (40%). Conclusions and Relevance: In this systematic review and meta-analysis of IA treatment literature, studies claiming safety, effectiveness, or durability of IA treatment had methodological flaws and incomplete reporting of relevant outcomes supporting these claims.


Subject(s)
Intracranial Aneurysm , Neurology , Humans , Intracranial Aneurysm/therapy , Hospital Mortality , Uncertainty
7.
EClinicalMedicine ; 63: 102161, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37600483

ABSTRACT

Background: Limited evidence existed on the comparative effectiveness of decompressive craniectomy (DC) versus craniotomy for evacuation of traumatic acute subdural hematoma (ASDH) until the recently published randomised clinical trial RESCUE-ASDH. In this study, that ran concurrently, we aimed to determine current practice patterns and compare outcomes of primary DC versus craniotomy. Methods: We conducted an analysis of centre treatment preference within the prospective, multicentre, observational Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (known as CENTER-TBI) and NeuroTraumatology Quality Registry (known as Net-QuRe) studies, which enrolled patients throughout Europe and Israel (2014-2020). We included patients with an ASDH who underwent acute neurosurgical evacuation. Patients with severe pre-existing neurological disorders were excluded. In an instrumental variable analysis, we compared outcomes between centres according to treatment preference, measured by the case-mix adjusted proportion DC per centre. The primary outcome was functional outcome rated by the 6-months Glasgow Outcome Scale Extended, estimated with ordinal regression as a common odds ratio (OR), adjusted for prespecified confounders. Variation in centre preference was quantified with the median odds ratio (MOR). CENTER-TBI is registered with ClinicalTrials.gov, number NCT02210221, and the Resource Identification Portal (Research Resource Identifier SCR_015582). Findings: Between December 19, 2014 and December 17, 2017, 4559 patients with traumatic brain injury were enrolled in CENTER-TBI of whom 336 (7%) underwent acute surgery for ASDH evacuation; 91 (27%) underwent DC and 245 (63%) craniotomy. The proportion primary DC within total acute surgery cases ranged from 6 to 67% with an interquartile range (IQR) of 12-26% among 46 centres; the odds of receiving a DC for prognostically similar patients in one centre versus another randomly selected centre were trebled (adjusted median odds ratio 2.7, p < 0.0001). Higher centre preference for DC over craniotomy was not associated with better functional outcome (adjusted common odds ratio (OR) per 14% [IQR increase] more DC in a centre = 0.9 [95% CI 0.7-1.1], n = 200). Primary DC was associated with more follow-on surgeries and complications [secondary cranial surgery 27% vs. 18%; shunts 11 vs. 5%]; and similar odds of in-hospital mortality (adjusted OR per 14% IQR more primary DC 1.3 [95% CI (1.0-3.4), n = 200]). Interpretation: We found substantial practice variation in the employment of DC over craniotomy for ASDH. This variation in treatment strategy did not result in different functional outcome. These findings suggest that primary DC should be restricted to salvageable patients in whom immediate replacement of the bone flap is not possible due to intraoperative brain swelling. Funding: Hersenstichting Nederland for the Dutch NeuroTraumatology Quality Registry and the European Union Seventh Framework Program.

8.
J Neurotrauma ; 40(19-20): 2126-2145, 2023 10.
Article in English | MEDLINE | ID: mdl-37212277

ABSTRACT

Traumatic brain injury (TBI) is a global public health problem and a leading cause of mortality, morbidity, and disability. The increasing incidence combined with the heterogeneity and complexity of TBI will inevitably place a substantial burden on health systems. These findings emphasize the importance of obtaining accurate and timely insights into healthcare consumption and costs on a multi-national scale. This study aimed to describe intramural healthcare consumption and costs across the full spectrum of TBI in Europe. The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core study is a prospective observational study conducted in 18 countries across Europe and in Israel. The baseline Glasgow Coma Scale (GCS) was used to differentiate patients by brain injury severity in mild (GCS 13-15), moderate (GCS 9-12), or severe (GCS ≤8) TBI. We analyzed seven main cost categories: pre-hospital care, hospital admission, surgical interventions, imaging, laboratory, blood products, and rehabilitation. Costs were estimated based on Dutch reference prices and converted to country-specific unit prices using gross domestic product (GDP)-purchasing power parity (PPP) adjustment. Mixed linear regression was used to identify between-country differences in length of stay (LOS), as a parameter of healthcare consumption. Mixed generalized linear models with gamma distribution and log link function quantified associations of patient characteristics with higher total costs. We included 4349 patients, of whom 2854 (66%) had mild, 371 (9%) had moderate, and 962 (22%) had severe TBI. Hospitalization accounted for the largest part of the intramural consumption and costs (60%). In the total study population, the mean LOS was 5.1 days at the intensive care unit (ICU) and 6.3 days at the ward. For mild, moderate, and severe TBI, mean LOS was, respectively, 1.8, 8.9, and 13.5 days at the ICU and 4.5, 10.1, and 10.3 days at the ward. Other large contributors to the total costs were rehabilitation (19%) and intracranial surgeries (8%). Total costs increased with higher age and greater trauma severity (mild; €3,800 [IQR €1,400-14,000], moderate; €37,800 [IQR €14,900-€74,200], severe; €60,400 [IQR €24,400-€112,700]). The adjusted analysis showed that female patients had lower costs than male patients (odds ratio (OR) 0.80 [CI 0.75-1.85]). Increasing TBI severity was associated with higher costs, OR 1.46 (confidence interval [CI] 1.31-1.63) and OR 1.67 [CI 1.52-1.84] for moderate and severe patients, respectively. A worse pre-morbid overall health state, increasing age and more severe systemic trauma, expressed in the Injury Severity Score (ISS), were also significantly associated with higher costs. Intramural costs of TBI are significant and are profoundly driven by hospitalization. Costs increased with trauma severity and age, and male patients incurred higher costs. Reducing LOS could be targeted with advanced care planning, in order to provide cost-effective care.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Male , Female , Brain Injuries, Traumatic/epidemiology , Hospitalization , Length of Stay , Prospective Studies , Glasgow Coma Scale
9.
Acta Neurochir (Wien) ; 164(7): 1693-1705, 2022 07.
Article in English | MEDLINE | ID: mdl-35648213

ABSTRACT

OBJECTIVE: To compare outcomes between patients with primary external ventricular device (EVD)-driven treatment of intracranial hypertension and those with primary intraparenchymal monitor (IP)-driven treatment. METHODS: The CENTER-TBI study is a prospective, multicenter, longitudinal observational cohort study that enrolled patients of all TBI severities from 62 participating centers (mainly level I trauma centers) across Europe between 2015 and 2017. Functional outcome was assessed at 6 months and a year. We used multivariable adjusted instrumental variable (IV) analysis with "center" as instrument and logistic regression with covariate adjustment to determine the effect estimate of EVD on 6-month functional outcome. RESULTS: A total of 878 patients of all TBI severities with an indication for intracranial pressure (ICP) monitoring were included in the present study, of whom 739 (84%) patients had an IP monitor and 139 (16%) an EVD. Patients included were predominantly male (74% in the IP monitor and 76% in the EVD group), with a median age of 46 years in the IP group and 48 in the EVD group. Six-month GOS-E was similar between IP and EVD patients (adjusted odds ratio (aOR) and 95% confidence interval [CI] OR 0.74 and 95% CI [0.36-1.52], adjusted IV analysis). The length of intensive care unit stay was greater in the EVD group than in the IP group (adjusted rate ratio [95% CI] 1.70 [1.34-2.12], IV analysis). One hundred eighty-seven of the 739 patients in the IP group (25%) required an EVD due to refractory ICPs. CONCLUSION: We found no major differences in outcomes of patients with TBI when comparing EVD-guided and IP monitor-guided ICP management. In our cohort, a quarter of patients that initially received an IP monitor required an EVD later for ICP control. The prevalence of complications was higher in the EVD group. PROTOCOL: The core study is registered with ClinicalTrials.gov , number NCT02210221, and the Resource Identification Portal (RRID: SCR_015582).


Subject(s)
Brain Injuries, Traumatic , Hemorrhagic Fever, Ebola , Intracranial Hypertension , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/therapy , Female , Hemorrhagic Fever, Ebola/complications , Humans , Intracranial Hypertension/complications , Intracranial Hypertension/diagnosis , Intracranial Hypertension/therapy , Intracranial Pressure , Male , Middle Aged , Monitoring, Physiologic , Prospective Studies
10.
Lancet Neurol ; 21(7): 620-631, 2022 07.
Article in English | MEDLINE | ID: mdl-35526554

ABSTRACT

BACKGROUND: Despite being well established, acute surgery in traumatic acute subdural haematoma is based on low-grade evidence. We aimed to compare the effectiveness of a strategy preferring acute surgical evacuation with one preferring initial conservative treatment in acute subdural haematoma. METHODS: We did a prospective, observational, comparative effectiveness study using data from participants enrolled in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) cohort. We included patients with no pre-existing severe neurological disorders who presented with acute subdural haematoma within 24 h of traumatic brain injury. Using an instrumental variable analysis, we compared outcomes between centres according to treatment preference for acute subdural haematoma (acute surgical evacuation or initial conservative treatment), measured by the case-mix-adjusted percentage of acute surgery per centre. The primary endpoint was functional outcome at 6 months as rated with the Glasgow Outcome Scale Extended, which was estimated with ordinal regression as a common odds ratio (OR) and adjusted for prespecified confounders. Variation in centre preference was quantified with the median OR (MOR). CENTER-TBI is registered with ClinicalTrials.gov, number NCT02210221, and the Resource Identification Portal (Research Resource Identifier SCR_015582). FINDINGS: Between Dec 19, 2014 and Dec 17, 2017, 4559 patients with traumatic brain injury were enrolled in CENTER-TBI, of whom 1407 (31%) presented with acute subdural haematoma and were included in our study. Acute surgical evacuation was done in 336 (24%) patients, by craniotomy in 245 (73%) of those patients and by decompressive craniectomy in 91 (27%). Delayed decompressive craniectomy or craniotomy after initial conservative treatment (n=982) occurred in 107 (11%) patients. The percentage of patients who underwent acute surgery ranged from 5·6% to 51·5% (IQR 12·3-35·9) between centres, with a two-times higher probability of receiving acute surgery for an identical patient in one centre versus another centre at random (adjusted MOR for acute surgery 1·8; p<0·0001]). Centre preference for acute surgery over initial conservative treatment was not associated with improvements in functional outcome (common OR per 23·6% [IQR increase] more acute surgery in a centre 0·92, 95% CI 0·77-1·09). INTERPRETATION: Our findings show that treatment for patients with acute subdural haematoma with similar characteristics differed depending on the treating centre, because of variation in the preferred approach. A treatment strategy preferring an aggressive approach of acute surgical evacuation over initial conservative treatment was not associated with better functional outcome. Therefore, in a patient with acute subdural haematoma for whom a neurosurgeon sees no clear superiority for acute surgery over conservative treatment, initial conservative treatment might be considered. FUNDING: The Hersenstichting Nederland (also known as the Dutch Brain Foundation), the European Commission Seventh Framework Programme, the Hannelore Kohl Stiftung (Germany), OneMind (USA), Integra LifeSciences Corporation (USA), and NeuroTrauma Sciences (USA).


Subject(s)
Brain Injuries, Traumatic , Hematoma, Subdural, Acute , Conservative Treatment , Glasgow Outcome Scale , Hematoma, Subdural, Acute/etiology , Hematoma, Subdural, Acute/surgery , Humans , Prospective Studies
11.
World Neurosurg ; 161: 230-239.e6, 2022 05.
Article in English | MEDLINE | ID: mdl-35505539

ABSTRACT

BACKGROUND: Regression analysis quantifies the relationships between one or more independent variables and a dependent variable and is one of the most frequently used types of analysis in medical research. The aim of this article is to provide a brief theoretical and practical tutorial for neurosurgeons wishing to conduct or interpret regression analyses. METHODS AND RESULTS: Data preparation, univariable and multivariable analysis, choice of model, model requirements and assumptions are discussed, as essential prerequisites to any regression analysis. Four main types of regression techniques are presented: linear, logistic, multinomial logistic, and proportional odds logistic. To illustrate the applications of regression to real-world data and exemplify the concepts introduced, we used a previously reported data set of patients with intracranial aneurysms treated by microsurgical clip reconstruction at the Department of Neurosurgery of Erasmus MC University Medical Center Rotterdam, between January 2000 and January 2019. CONCLUSIONS: Regression analysis is a powerful and versatile instrument in data analysis. This material is intended as a starter for those wishing to critically interpret or perform regression analysis and we recommend multidisciplinary collaborations with trained methodologists, statisticians, or epidemiologists.


Subject(s)
Biomedical Research , Humans , Regression Analysis , Research Design
12.
Neurotrauma Rep ; 2(1): 4-14, 2022.
Article in English | MEDLINE | ID: mdl-35112104

ABSTRACT

The aims of this study are to describe the use of pharmaceutical venous thromboembolism (pVTE) prophylaxis in patients with traumatic brain injury (TBI) in Europe and study the association of pVTE prophylaxis with outcome. We included 2006 patients ≥18 years of age admitted to the intensive care unit from the CENTER-TBI study. VTE events were recorded based on clinical symptoms. Variation between 54 centers in pVTE prophylaxis use was assessed with a multi-variate random-effect model and quantified with the median odds ratio (MOR). The association between pVTE prophylaxis and outcome (Glasgow Outcome Scale-Extended at 6 months) was assessed at center level with an instrumental variable analysis and at patient level with a multi-variate proportional odds regression analysis and a propensity-matched analysis. A time-dependent Cox survival regression analysis was conducted to determine the effect of pVTE prophylaxis on survival during hospital stay. The association between VTE prophylaxis and computed tomography (CT) progression was assessed with a logistic regression analysis. Overall, 56 patients (2%) had a VTE during hospital stay. The majority, 1279 patients (64%), received pVTE prophylaxis, with substantial between-center variation (MOR, 2.7; p < 0.001). A moderate association with improved outcome was found at center level (odds ratio [OR], 1.2 [0.7-2.1]) and patient level (multi-variate adjusted OR, 1.4 [1.1-1.7], and propensity adjusted OR, 1.5 [1.1-2.0]), with similar results in subgroup analyses. Survival was higher with the use of pVTE prophylaxis (p < 0.001). We found no clear effect on CT progression (OR, 0.9; CI [0.6-1.2]). Overall, practice policies for pVTE prophylaxis vary substantially between European centers, whereas pVTE prophylaxis may contribute to improved outcome. Trial registration number is NCT02210221 at ClinicalTrials.gov, registered on August 6, 2014 (first patient enrollment on December 19, 2014).

13.
JAMA Neurol ; 78(9): 1137-1148, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34279565

ABSTRACT

Importance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood. Objective: To identify pathological CT features associated with adverse outcomes after mTBI. Design, Setting, and Participants: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021. Exposures: Acute nonpenetrating head trauma. Main Outcomes and Measures: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months. Results: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI .98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study. Conclusions and Relevance: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Recovery of Function , Adult , Aged , Brain Concussion/complications , Cohort Studies , Female , Humans , Intracranial Hemorrhages/diagnostic imaging , Intracranial Hemorrhages/etiology , Male , Middle Aged , Prognosis , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...