Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Curr Microbiol ; 81(7): 189, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789812

ABSTRACT

The flooding pampa is one of the most important cattle-raising regions in Argentina. In this region, natural pastures are dominated by low-productivity native grass species, which are the main feed for livestock. In this context, previous studies in the region with the subtropical exotic grass Panicum coloratum highlight it as a promising species to improve pasture productivity. Cultivable phosphate solubilizing bacteria (PSB) communities associated to native (Sporobolus indicus) and exotic (Panicum coloratum) forage grasses adapted to alkaline-sodic soils of the flooding pampa were analyzed. PSB represented 2-14% of cultivable rhizobacteria and Box-PCR fingerprinting revealed a high genetic diversity in both rhizospheres. Taxonomic identification by MALDI-TOF showed that PSB populations of P. coloratum and S. indicus rhizospheres are dominated by the phylum Proteobacteria (92,51% and 96,60% respectively) and to a lesser extent (< 10%), by the phyla Actinobacteria and Firmicutes. At the genus level, both PSB populations were dominated by Enterobacter and Pseudomonas. Siderophore production, nitrogen fixation, and indoleacetic acid production were detected in a variety of PSB genera of both plant species. A higher proportion of siderophore and IAA producers were associated to P. coloratum than S. indicus, probably reflecting a greater dependence of the exotic species on rhizospheric microorganisms to satisfy its nutritional requirements in the soils of the flooding pampa. This work provides a novel knowledge about functional groups of bacteria associated to plants given that there are no previous reports dedicated to the characterization of PSB rhizosphere communities of S indicus and P coloratum. Finally, it should be noted that the collection obtained in this study can be useful for the development of bioinputs that allow reducing the use of chemical fertilizers, providing sustainability to pasture production systems for livestock.


Subject(s)
Bacteria , Phosphates , Poaceae , Rhizosphere , Soil Microbiology , Soil , Poaceae/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Soil/chemistry , Phosphates/metabolism , Argentina , Animals , Phylogeny , Siderophores/metabolism , Nitrogen Fixation , Indoleacetic Acids/metabolism , Floods , RNA, Ribosomal, 16S/genetics
2.
Sci Rep ; 13(1): 22168, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092837

ABSTRACT

Bacillus sp. MEP218, a soil bacterium with high potential as a source of bioactive molecules, produces mostly C16-C17 fengycin and other cyclic lipopeptides (CLP) when growing under previously optimized culture conditions. This work addressed the elucidation of the genome sequence of MEP218 and its taxonomic classification. The genome comprises 3,944,892 bp, with a total of 3474 coding sequences and a G + C content of 46.59%. Our phylogenetic analysis to determine the taxonomic position demonstrated that the assignment of the MEP218 strain to Bacillus velezensis species provides insights into its evolutionary context and potential functional attributes. The in silico genome analysis revealed eleven gene clusters involved in the synthesis of secondary metabolites, including non-ribosomal CLP (fengycins and surfactin), polyketides, terpenes, and bacteriocins. Furthermore, genes encoding phytase, involved in the release of phytic phosphate for plant and animal nutrition, or other enzymes such as cellulase, xylanase, and alpha 1-4 glucanase were detected. In vitro antagonistic assays against Salmonella typhimurium, Acinetobacter baumanii, Escherichia coli, among others, demonstrated a broad spectrum of C16-C17 fengycin produced by MEP218. MEP218 genome sequence analysis expanded our understanding of the diversity and genetic relationships within the Bacillus genus and updated the Bacillus databases with its unique trait to produce antibacterial fengycins and its potential as a resource of biotechnologically useful enzymes.


Subject(s)
Bacillus , Genome, Bacterial , Phylogeny , Bacillus/genetics , Bacillus/metabolism , Lipopeptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
3.
PLoS One ; 18(5): e0285505, 2023.
Article in English | MEDLINE | ID: mdl-37200389

ABSTRACT

Rhizobia are Gram-negative bacteria known for their ability to fix atmospheric N2 in symbiosis with leguminous plants. Current evidence shows that rhizobia carry in most cases a variable number of plasmids, containing genes necessary for symbiosis or free-living, a common feature being the presence of several plasmid replicons within the same strain. For many years, we have been studying the mobilization properties of pSmeLPU88b from the strain Sinorhizobium meliloti LPU88, an isolate from Argentina. To advance in the characterization of pSmeLPU88b plasmid, the full sequence was obtained. pSmeLPU88b is 35.9 kb in size, had an average GC % of 58.6 and 31 CDS. Two replication modules were identified in silico: one belonging to the repABC type, and the other to the repC. The replication modules presented high DNA identity to the replication modules from plasmid pMBA9a present in an S. meliloti isolate from Canada. In addition, three CDS presenting identity with recombinases and with toxin-antitoxin systems were found downstream of the repABC system. It is noteworthy that these CDS present the same genetic structure in pSmeLPU88b and in other rhizobial plasmids. Moreover, in all cases they are found downstream of the repABC operon. By cloning each replication system in suicide plasmids, we demonstrated that each of them can support plasmid replication in the S. meliloti genetic background, but with different stability behavior. Interestingly, while incompatibility analysis of the cloned rep systems results in the loss of the parental module, both obtained plasmids can coexist together.


Subject(s)
Rhizobium , Sinorhizobium meliloti , Humans , Sinorhizobium meliloti/genetics , Plasmids/genetics , DNA, Bacterial/genetics , Replicon/genetics , DNA Replication/genetics , Rhizobium/genetics , Bacterial Proteins/genetics
4.
mBio ; 13(5): e0194922, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36073816

ABSTRACT

Rhizobia are Gram-negative bacteria that are able to establish a nitrogen-fixing symbiotic interaction with leguminous plants. Rhizobia genomes usually harbor several plasmids which can be transferred to other organisms by conjugation. Two main mechanisms of the regulation of rhizobial plasmid transfer have been described: quorum sensing (QS) and the rctA/rctB system. Nevertheless, new genes and molecules that modulate conjugative transfer have recently been described, demonstrating that new actors can tightly regulate the process. In this work, by means of bioinformatics tools and molecular biology approaches, two hypothetical genes are identified as playing key roles in conjugative transfer. These genes are located between conjugative genes of plasmid pRfaLPU83a from Rhizobium favelukesii LPU83, a plasmid that shows a conjugative transfer behavior depending on the genomic background. One of the two mentioned genes, rcgA, is essential for conjugation, while the other, rcgR, acts as an inhibitor of the process. In addition to introducing this new regulatory system, we show evidence of the functions of these genes in different genomic backgrounds and confirm that homologous proteins from non-closely related organisms have the same functions. These findings set up the basis for a new regulatory circuit of the conjugative transfer of plasmids. IMPORTANCE Extrachromosomal DNA elements, such as plasmids, allow for the adaptation of bacteria to new environments by conferring new determinants. Via conjugation, plasmids can be transferred between members of the same bacterial species, different species, or even to organisms belonging to a different kingdom. Knowledge about the regulatory systems of plasmid conjugative transfer is key in understanding the dynamics of their dissemination in the environment. As the increasing availability of genomes raises the number of predicted proteins with unknown functions, deeper experimental procedures help to elucidate the roles of these determinants. In this work, two uncharacterized proteins that constitute a new regulatory circuit with a key role in the conjugative transfer of rhizobial plasmids were discovered.


Subject(s)
Conjugation, Genetic , Quorum Sensing , Plasmids/genetics , Bacteria/genetics , Nitrogen , DNA , Gene Transfer, Horizontal
5.
Braz J Microbiol ; 53(3): 1633-1643, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35704174

ABSTRACT

The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn2+. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.


Subject(s)
Rhizobium , Symbiosis , Acids/pharmacology , Medicago sativa/metabolism , Nitrogen Fixation/genetics , Rhizobium/genetics , Symbiosis/genetics
6.
Front Plant Sci ; 12: 642576, 2021.
Article in English | MEDLINE | ID: mdl-33643369

ABSTRACT

One of the greatest inputs of available nitrogen into the biosphere occurs through the biological N2-fixation to ammonium as result of the symbiosis between rhizobia and leguminous plants. These interactions allow increased crop yields on nitrogen-poor soils. Exopolysaccharides (EPS) are key components for the establishment of an effective symbiosis between alfalfa and Ensifer meliloti, as bacteria that lack EPS are unable to infect the host plants. Rhizobium favelukesii LPU83 is an acid-tolerant rhizobia strain capable of nodulating alfalfa but inefficient to fix nitrogen. Aiming to identify the molecular determinants that allow R. favelukesii to infect plants, we studied its EPS biosynthesis. LPU83 produces an EPS I identical to the one present in E. meliloti, but the organization of the genes involved in its synthesis is different. The main gene cluster needed for the synthesis of EPS I in E. meliloti, is split into three different sections in R. favelukesii, which probably arose by a recent event of horizontal gene transfer. A R. favelukesii strain devoided of all the genes needed for the synthesis of EPS I is still able to infect and nodulate alfalfa, suggesting that attention should be directed to other molecules involved in the development of the symbiosis.

7.
J Biotechnol ; 329: 80-91, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33539896

ABSTRACT

The nitrogen-fixing α-proteobacterium Sinorhizobium meliloti genome codifies at least 50 response regulator (RR) proteins mediating different and, in many cases, unknown processes. RR-mutant library screening allowed us to identify genes potentially implicated in survival to acid conditions. actJ mutation resulted in a strain with reduced growth rate under mildly acidic conditions as well as a lower capacity to tolerate a sudden shift to lethal acidic conditions compared with the parental strain. Mutation of the downstream gene actK, which encodes for a histidine kinase, showed a similar phenotype in acidic environments suggesting a functional two-component system. Interestingly, even though nodulation kinetics, quantity, and macroscopic morphology of Medicago sativa nodules were not affected in actJ and actK mutants, ActK was required to express the wild-type nitrogen fixation phenotype and ActJK was necessary for full bacteroid development and nodule occupancy. The actJK regulatory system presented here provides insights into an evolutionary process in rhizobium adaptation to acidic environments and suggests that actJK-controlled functions are crucial for optimal symbiosis development.


Subject(s)
Sinorhizobium meliloti , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Medicago sativa/metabolism , Nitrogen Fixation , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Symbiosis/genetics
8.
Food Technol Biotechnol ; 59(4): 519-529, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35136375

ABSTRACT

RESEARCH BACKGROUND: In recent decades, laccases (p-diphenol-dioxygen oxidoreductases; EC 1.10.3.2) have attracted the attention of researchers due to their wide range of biotechnological and industrial applications. Laccases can oxidize a variety of organic and inorganic compounds, making them suitable as biocatalysts in biotechnological processes. Even though the most traditionally used laccases in the industry are of fungal origin, bacterial laccases have shown an enormous potential given their ability to act on several substrates and in multiple conditions. The present study aims to characterize a plasmid-encoded laccase-like multicopper oxidase (LMCO) from Ochrobactrum sp. BF15, a bacterial strain previously isolated from polluted soil. EXPERIMENTAL APPROACH: We used in silico profile hidden Markov models to identify novel laccase-like genes in Ochrobactrum sp. BF15. For laccase characterization, we performed heterologous expression in Escherichia coli, purification and activity measurement on typical laccase substrates. RESULTS AND CONCLUSIONS: Profile hidden Markov models allowed us to identify a novel LMCO, named Lac80. In silico analysis of Lac80 revealed the presence of three conserved copper oxidase domains characteristic of three-domain laccases. We successfully expressed Lac80 heterologously in E. coli, allowing us to purify the protein for further activity evaluation. Of thirteen typical laccase substrates tested, Lac80 showed lower activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), pyrocatechol, pyrogallol and vanillic acid, and higher activity on 2,6-dimethoxyphenol. NOVELTY AND SCIENTIFIC CONTRIBUTION: Our results show Lac80 as a promising laccase for use in industrial applications. The present work shows the relevance of bacterial laccases and highlights the importance of environmental plasmids as valuable sources of new genes encoding enzymes with potential use in biotechnological processes.

9.
PLoS One ; 15(12): e0243848, 2020.
Article in English | MEDLINE | ID: mdl-33315910

ABSTRACT

Soil microbiomes, as a primary reservoir for plant colonizing fungi and bacteria, play a major role in determining plant productivity and preventing invasion by pathogenic microorganisms. The use of 16S rRNA and ITS high-throughput amplicon sequencing for analysis of complex microbial communities have increased dramatically in recent years, establishing links between wine specificity and, environmental and viticultural factors, which are framed into the elusive terroir concept. Given the diverse and complex role these factors play on microbial soil structuring of agricultural crops, the main aim of this study is to evaluate how external factors, such as vintage, vineyard location, cultivar and soil characteristics, may affect the diversity of the microbial communities present. Additionally, we aim to compare the influence these factors have on the structuring of bacterial and fungal populations associated with Malbec grapevine rhizosphere with that of the more widespread Cabernet Sauvignon grapevine cultivar. Samples were taken from Malbec and Cabernet Sauvignon cultivars from two different vineyards in the San Juan Province of Argentina. Total DNA extracts from the rhizosphere soil samples were sequenced using Illumina's Miseq technology, targeting the V3-V4 hypervariable 16S rRNA region in prokaryotes and the ITS1 region in yeasts. The major bacterial taxa identified were Proteobacteria, Bacteroidetes and Firmicutes, while the major fungal taxa were Ascomycetes, Basidiomycetes, Mortierellomycetes and a low percentage of Glomeromycetes. Significant differences in microbial community composition were found between vintages and vineyard locations, whose soils showed variances in pH, organic matter, and content of carbon, nitrogen, and absorbable phosphorus.


Subject(s)
Geography , Microbiota , Rhizosphere , Vitis/microbiology , Argentina , Bacteria/classification , Biodiversity , Climate , Fungi/classification , Soil/chemistry
10.
FEMS Microbiol Ecol ; 97(1)2020 12 30.
Article in English | MEDLINE | ID: mdl-33220679

ABSTRACT

Acidic environments naturally occur worldwide and inappropriate agricultural management may also cause acidification of soils. Low soil pH values are an important barrier in the plant-rhizobia interaction. Acidic conditions disturb the establishment of the efficient rhizobia usually used as biofertilizer. This negative effect on the rhizobia-legume symbiosis is mainly due to the low acid tolerance of the bacteria. Here, we describe the identification of relevant factors in the acid tolerance of Rhizobium favelukesii using transcriptome sequencing. A total of 1924 genes were differentially expressed under acidic conditions, with ∼60% underexpressed. Rhizobium favelukesii acid response mainly includes changes in the energy metabolism and protein turnover, as well as a combination of mechanisms that may contribute to this phenotype, including GABA and histidine metabolism, cell envelope modifications and reverse proton efflux. We confirmed the acid-sensitive phenotype of a mutant in the braD gene, which showed higher expression under acid stress. Remarkably, 60% of the coding sequences encoded in the symbiotic plasmid were underexpressed and we evidenced that a strain cured for this plasmid featured an improved performance under acidic conditions. Hence, this work provides relevant information in the characterization of genes associated with tolerance or adaptation to acidic stress of R. favelukesii.


Subject(s)
Rhizobium , Acids/toxicity , Gene Expression Profiling , Rhizobium/genetics , Symbiosis
11.
Syst Appl Microbiol ; 43(1): 126044, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31810817

ABSTRACT

Three symbiotic nitrogen-fixing bacteria (BD68T, BD66 and BD73) isolated from root nodules of Lotus tenuis in lowland soils of the Flooding Pampa (Argentina), previously classified as members of the Mesorhizobium genus, were characterized in this study. Phylogenetic analysis of their 16S rRNA gene sequences showed a close relationship to M. japonicum MAFF 303099T, M. erdmanii USDA 3471T, M. carmichaelinearum ICMP 18942T, M. opportunistum WSM 2975T and M. jarvisii ATCC 33699T, with sequence identities of 99.72%-100%. Multilocus sequence analysis of other housekeeping genes revealed that the three isolates belonged to a phylogenetically distinct clade within the genus Mesorhizobium. Strain BD68T was designated as the group representative and its genome was fully sequenced. The average nucleotide identity and in silico DNA-DNA hybridization comparisons between BD68T and the most related type strains showed values below the accepted threshold for species discrimination. Phenotypic and chemotaxonomic features were also studied. Based on these results, BD68T, BD66 and BD73 could be considered to represent a novel species of the genus Mesorhizobium, for which the name Mesorhizobium intechi sp. nov. is hereby proposed. The type strain of this species is BD68T (=CECT 9304T=LMG 30179T).


Subject(s)
Lotus/microbiology , Mesorhizobium/classification , Phylogeny , Root Nodules, Plant/microbiology , Argentina , DNA, Bacterial/genetics , Fatty Acids/analysis , Genes, Bacterial/genetics , Genes, Essential/genetics , Genome, Bacterial/genetics , Mesorhizobium/chemistry , Mesorhizobium/cytology , Mesorhizobium/physiology , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
12.
J Proteome Res ; 18(10): 3615-3629, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31432679

ABSTRACT

Acid soils constitute a severe problem for leguminous crops mainly through a disturbance in rhizobium-legume interactions. Rhizobium favelukesii-an acid-tolerant rhizobium able to nodulate alfalfa-is highly competitive for nodule occupation under acid conditions but inefficient for biologic nitrogen fixation. In this work, we obtained a general description of the acid-stress response of R. favelukesii LPU83 by means of proteomics by comparing the total proteome profiles in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. Thus, a total of 336 proteins were identified with a significant differential expression, 136 of which species were significantly overexpressed and 200 underexpressed in acidity. An in silico functional characterization with those respective proteins revealed a complex and pleiotropic response by these rhizobia involving components of oxidative phosphorylation, glutamate metabolism, and peptidoglycan biosynthesis, among other pathways. Furthermore, a lower permeability was evidenced in the acid-stressed cells along with several overexpressed proteins related to γ-aminobutyric acid metabolism, such as the gene product of livK, which gene was mutated. This mutant exhibited an acid-sensitive phenotype in agreement with the proteomics results. We conclude that both the γ-aminobutyric acid metabolism and a modified cellular envelope could be relevant to acid tolerance in R. favelukesii.


Subject(s)
Bacterial Proteins/analysis , Proteomics/methods , Rhizobium/chemistry , Stress, Physiological/drug effects , Acids/pharmacology , Bacterial Proteins/physiology , Cell Membrane Permeability , Chromatography, High Pressure Liquid , Mass Spectrometry , Mutation , Plant Root Nodulation , Rhizobium/physiology , Soil/chemistry , gamma-Aminobutyric Acid/genetics , gamma-Aminobutyric Acid/metabolism
13.
Plasmid ; 103: 9-16, 2019 05.
Article in English | MEDLINE | ID: mdl-30928704

ABSTRACT

Plasmids are widely distributed in rhizobia, a group of bacteria able to establish symbiotic relationships with the roots of legume plants. Two types of conjugative transfer (CT) regulation of these elements have been described in more detail. The most prevalent is through Quorum-Sensing (QS), mediated by the interaction of the TraR regulator protein and its cognate acyl-homoserine lactone (AHL) synthesized by TraI. In this study, we analyzed rhizobial plasmids classified according to their TraR regulators into four different groups. Each group has a particular genomic architecture. In one of the groups (I-C), represented by pLPU83a from Rhizobium favelukesii LPU83, CT induction requires TraR. With manual annotation, a traI was located in the plasmid distant to the traR gene. These features make pLPU83a an interesting plasmid for studying novel mechanisms of CT regulation. We mutagenized the traI gene, and found that it does not participate in CT regulation. Furthermore, we studied whether pLPU83a is subject to QS regulation by determining CT at different growth stages (cell densities). Our results showed no positive correlation between increase in culture densities and CT induction, on the contrary a slight decrease in CT was found at higher culture densities, unlike other TraR-depending plasmids. Our results show that transfer of pLPU83a is not regulated in a QS-dependent manner, and suggest that molecules not yet identified may activate its CT. Also, accumulation of a putative inhibitor cannot be disregarded.


Subject(s)
Agrobacterium tumefaciens/genetics , Conjugation, Genetic , Plasmids/chemistry , Quorum Sensing/genetics , Rhizobium/genetics , Acyl-Butyrolactones/metabolism , Agrobacterium tumefaciens/metabolism , Bacterial Load , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fabaceae/microbiology , Molecular Sequence Annotation , Phylogeny , Plant Roots/microbiology , Plasmids/classification , Plasmids/metabolism , Rhizobium/metabolism , Symbiosis/genetics
14.
Genome Announc ; 6(19)2018 May 10.
Article in English | MEDLINE | ID: mdl-29748412

ABSTRACT

Mesorhizobium helmanticense is a novel species that was isolated from root nodules of Lotus corniculatus grown in an alfisol soil from Carbajosa de la Sagrada, a Mediterranean region in the province of Salamanca in northwest Spain. The whole-genome sequence of the type strain M. helmanticense CSLC115N is reported in this study.

15.
Sci Rep ; 8(1): 7783, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29773850

ABSTRACT

Bacteria belonging to the genus Acinetobacter have become of clinical importance over the last decade due to the development of a multi-resistant phenotype and their ability to survive under multiple environmental conditions. The development of these traits among Acinetobacter strains occurs frequently as a result of plasmid-mediated horizontal gene transfer. In this work, plasmids from nosocomial and environmental Acinetobacter spp. collections were separately sequenced and characterized. Assembly of the sequenced data resulted in 19 complete replicons in the nosocomial collection and 77 plasmid contigs in the environmental collection. Comparative genomic analysis showed that many of them had conserved backbones. Plasmid coding sequences corresponding to plasmid specific functions were bioinformatically and functionally analyzed. Replication initiation protein analysis revealed the predominance of the Rep_3 superfamily. The phylogenetic tree constructed from all Acinetobacter Rep_3 superfamily plasmids showed 16 intermingled clades originating from nosocomial and environmental habitats. Phylogenetic analysis of relaxase proteins revealed the presence of a new sub-clade named MOBQAci, composed exclusively of Acinetobacter relaxases. Functional analysis of proteins belonging to this group showed that they behaved differently when mobilized using helper plasmids belonging to different incompatibility groups.


Subject(s)
Acinetobacter/genetics , Plasmids/genetics , Argentina , DNA Replication , Gene Transfer, Horizontal , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA
16.
FEMS Microbiol Ecol ; 94(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29300936

ABSTRACT

Rapid dissemination and emergence of novel antibiotic resistance genes among bacteria are rising problems worldwide. Since their discovery in clinical isolates in the late 1980s, class 1 integrons have been found in a wide range of bacterial genera and have been extensively studied as contributors to dissemination of antibiotic resistance. The present study aimed to investigate the presence and structure of class 1 integrons in plasmid-carrying bacterial isolates obtained from a biopurification system used for decontamination of pesticide-contaminated water as well as their possible role as reservoir of antimicrobial resistance gene cassettes. A total of 35 representative isolates were screened for the presence of class 1 integron integrase encoded by intI1. PCR and DNA sequencing revealed the presence of six class 1 integrons with four variable regions: 5΄CS-aadA1b-3΄CS, 5΄CS-aadA2-3΄CS, 5΄CS-aadA11cΔ-3΄CS and 5΄CS-dfrB3-aadA1di-catB2-aadA6k-3΄CS, the last two being unseen arrays of antimicrobial resistance gene cassettes associated with novel environmental alleles of intI1. These four class 1 integrons were identified as being present in four different genera, including Ochrobactrum, and Variovorax, where class 1 integrons have not been previously reported. The results provide evidence of the biopurification systems as a tank of class 1 integron carrying strains and novel environmental class 1 integron integrases associated with antimicrobial resistance gene cassette arrays.


Subject(s)
Bacteria/genetics , Integrons , Soil Microbiology , Animals , Bacteria/classification , Bacteria/enzymology , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Farms , Integrases/genetics , Integrases/metabolism , Livestock , Manure/microbiology , Plasmids/genetics
17.
Environ Microbiol ; 19(9): 3423-3438, 2017 09.
Article in English | MEDLINE | ID: mdl-28618121

ABSTRACT

Rhizobia are α- and ß-proteobacteria that associate with legumes in symbiosis to fix atmospheric nitrogen. The chemical communication between roots and rhizobia begins in the rhizosphere. Using signature-tagged-Tn5 mutagenesis (STM) we performed a genome-wide screening for Ensifer meliloti genes that participate in colonizing the rhizospheres of alfalfa and other legumes. The analysis of ca. 6,000 mutants indicated that genes relevant for rhizosphere colonization account for nearly 2% of the rhizobial genome and that most (ca. 80%) are chromosomally located, pointing to the relevance and ancestral origin of the bacterial ability to colonize plant roots. The identified genes were related to metabolic functions, transcription, signal transduction, and motility/chemotaxis among other categories; with several ORFs of yet-unknown function. Most remarkably, we identified a subset of genes that impacted more severely the colonization of the roots of alfalfa than of pea. Further analyses using other plant species revealed that such early differential phenotype could be extended to other members of the Trifoliae tribe (Trigonella, Trifolium), but not the Fabeae and Phaseoleae tribes. The results suggest that consolidation of E. meliloti into its current symbiotic state should have occurred in a rhizobacterium that had already been adapted to rhizospheres of the Trifoliae tribe.


Subject(s)
Medicago sativa/microbiology , Pisum sativum/microbiology , Plant Roots/microbiology , Rhizosphere , Sinorhizobium meliloti/growth & development , Symbiosis/genetics , Genome-Wide Association Study , Phenotype , Plant Root Nodulation/genetics , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/genetics
18.
Genome Announc ; 5(4)2017 Jan 26.
Article in English | MEDLINE | ID: mdl-28126941

ABSTRACT

Rhizobium tibeticum was originally isolated from root nodules of Trigonella archiducis-nicolai grown in Tibet, China. This species is also able to nodulate Medicago sativa and Phaseolus vulgaris The whole-genome sequence of the type strain, R. tibeticum CCBAU85039T, is reported in this study.

19.
Int J Syst Evol Microbiol ; 66(11): 4451-4457, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27499008

ABSTRACT

Strains LPU83T and Or191 of the genus Rhizobium were isolated from the root nodules of alfalfa, grown in acid soils from Argentina and the USA. These two strains, which shared the same plasmid pattern, lipopolysaccharide profile, insertion-sequence fingerprint, 16S rRNA gene sequence and PCR-fingerprinting pattern, were different from reference strains representing species of the genus Rhizobium with validly published names. On the basis of previously reported data and from new DNA-DNA hybridization results, phenotypic characterization and phylogenetic analyses, strains LPU83T and Or191 can be considered to be representatives of a novel species of the genus Rhizobium, for which the name Rhizobium favelukesii sp. nov. is proposed. The type strain of this species is LPU83T (=CECT 9014T=LMG 29160T), for which an improved draft-genome sequence is available.


Subject(s)
Medicago sativa/microbiology , Phylogeny , Rhizobium/classification , Root Nodules, Plant/microbiology , Argentina , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Rhizobium/isolation & purification , Sequence Analysis, DNA , United States
20.
Microbiol Res ; 190: 55-62, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27393999

ABSTRACT

Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots.


Subject(s)
Azospirillum brasilense/physiology , Bacterial Adhesion , Bacterial Proteins/genetics , Carbohydrate Epimerases/genetics , Flagella/metabolism , Hydro-Lyases/genetics , Organelle Biogenesis , Polysaccharides, Bacterial/metabolism , Transaminases/genetics , Aeromonas caviae/genetics , Azospirillum brasilense/genetics , Locomotion , Mutation , Plant Roots/microbiology , Sequence Homology , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL