Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 50(26): 9010-9015, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34180936

ABSTRACT

A self-assembled metallobox from copper(ii) and two macrocycles containing 1H-pyrazole ligands has been prepared. The internal cavity of the box is able to selectively encapsulate a single chloride anion over any other halide anion.

2.
Dalton Trans ; 50(20): 6834-6839, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33912885

ABSTRACT

Anion-π interactions are emerging as exotic features with potential applications in chemistry. In the last years, their relevance in living systems has been outlined, and so far there is no concluding significant evidence recognized about the participation of anion-π interactions in water because anion-π sensors contain large aromatic hydrophobic surfaces with limited solubility. By transforming a neutral heterocycle (for example quinoline) into its corresponding salt (quinolinium), we have been able to overcome these solubility issues, and new cationic water-soluble fluorophores have been prepared. Herein, we used N-alkylated heterocycles as π-acidic surfaces to shed light on the nature of anion-π in water by the direct measurement of the fluorescence and UV/Vis spectra in combination with DFT and X-ray analyses.

3.
Dalton Trans ; 49(25): 8614-8624, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32543616

ABSTRACT

Three new [1 + 1] macrocycles formed by the reaction of 1H-3,5-bis(chloromethyl)pyrazole with the tosylated amines 1,4,7,10-tetraazadecane (L1), 1,4,8,11-tetraazaundecane (L2) and 1,5,10,14-tetraazatetradecane (L3) are described. Potentiometric studies and HR-ESI-Mass spectrometry show the formation of dimeric binuclear Cu2+ complexes whose organization depends on the type of hydrocarbon chains connecting the amine groups. Furthermore, trinuclear or/and tetranuclear complexes are formed depending also on the length of the polyaminic bridge and on the sequence of the hydrocarbon chains. The crystal structures of the [2 + 2] [Cu2(H(H-1L2))2](ClO4)4·4H2O (1) and [Cu2(H-1L2)2](ClO4)2 (2) complexes show in both of them two macrocycles self-assembled by the metal ions which interconnect their pyrazolate fragments that behave as bis(monodentate) ligands. While in 1 one central amine of each macrocycle binds to the axial position of a distorted square-pyramid and the other ones remain protonated, in 2 all the amine groups are involved in the coordination giving rise to a strongly distorted octahedral geometry. Paramagnetic 1H NMR measurements support that these structures also form in solution. Interestingly, tetranuclear complexes [Cu4(H-1L4)2(OH)2.08](ClO4)2.92Br0.54Cl0.46 (3) and [Pd2.39Cu1.61(H-1L4)2(OH)2](ClO4)2Cl1.33Br0.67·2.87H2O (4) have been isolated for the macrocycle containing the 1,5,9,13-tetraamine chain (L4). 3 has two binucleating units, one of them formed by the pyrazolate moieties and their neighbouring secondary amines and the other by the two central amines of both macrocycles. This latter Cu2+ coordination site is completed by two hydroxide anions as bridging ligands. 4 was obtained from a solution prepared to achieve full formation of the dimeric cage [Cu2(H-1(HL4))2]4+ by addition of K2PdCl4. The Pd2+ ion due to its softer acidic characteristics displaces the Cu2+ ions from the pyrazolate site. UV-vis spectroscopy suggests that the exchange is completed at room temperature after one hour.

4.
Eur J Med Chem ; 164: 27-46, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30583247

ABSTRACT

Despite the continuous research effort that has been made in recent years to find ways to treat the potentially life threatening Chagas disease (CD), this remains the third most important infectious disease in Latin America. CD is an important public health problem affecting 6-7 million people. Since the need to search for new drugs for the treatment of DC persists, in this article we present a panel of new polyamines based on the tripodal structure of tris(2-aminomethyl)amine (tren) that can be prepared at low cost with high yields. Moreover, these polyamines present the characteristic of being water-soluble and resistant to the acidic pH values of stomach, which would allow their potential oral administration. In vitro and in vivo assays permitted to identify the compound with the tren moiety functionalized with one fluorene unit (7) as a potential antichagas agent. Compound 7 has broader spectrum of action, improved efficacy in acute and chronic phases of the disease and lower toxicity than the reference drug benznidazole. Finally, the action mechanisms studied at metabolic and mitochondrial levels shows that the trypanocidal activity of compound 7 could be related to its effect at the glycosomal level. Therefore, this work allowed us to select compound 7 as a promising candidate to perform preclinical evaluation studies.


Subject(s)
Chagas Disease/drug therapy , Polyamines/therapeutic use , Trypanocidal Agents/pharmacology , Acute Disease/therapy , Animals , Chronic Disease/drug therapy , Drug Design , Fluorenes/chemistry , Humans , Microbodies/drug effects , Nitroimidazoles/pharmacology , Polyamines/chemistry , Polyamines/toxicity , Solubility , Trypanosoma cruzi/drug effects
5.
Inorg Chem ; 57(17): 10961-10973, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30129755

ABSTRACT

A new tetraaza-pyridinophane macrocycle (L1) N-alkylated with two isopropyl and one methyl groups symmetrically disposed has been prepared and its behavior compared with those of the unsubstituted pyridinophane (L3) and the related compound with three methyl groups (L2). The protonation studies show that, first, a proton binds to the central methylated amine group of L1, while, second protonation leads to a reorganization of the protons that are at this stage attached to the lateral isopropylated amines. The X-ray structure of [HL1]+ agrees with the UV-vis and NMR studies as well as with the results of DFT calculations. The stability of the Cu2+ complexes decreases on increasing the bulkiness of the alkyl substituents of the amine groups. The crystal structures of [CuL1Cl](ClO4) and [CuL1(H2O)](ClO4)2·H2O show square pyramidal coordination geometries with the ligands disposed in a bent L-shaped conformation. Kinetic studies indicate that the rates of both complexation and ligand dissociation decrease with the bulkiness of the substituents, so that the stability changes are surely the results of compensating effects, complex formation dominating over complex dissociation. The pH dependence of the rate constants for complex formation cannot be explained by consideration of rapid pre-equilibria involving the different protonated forms of the ligand, and it has been interpreted in terms of a mechanism involving an acid-base equilibrium for a reaction intermediate. NBT SOD studies show that the Cu2+ complex of the bulkiest L1 ligand is the one having the highest activity (IC50 = 0.26(5) µM, kcat = 13.7 × 106 M-1 s-1) which can be associated with the poorer σ-donor ability of the tertiary amino groups, and the rigidity of the system, caused by the bulky isopropyl groups.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Superoxide Dismutase/metabolism , Alkylating Agents/chemistry , Computer Simulation , Hydrogen-Ion Concentration , Ions , Kinetics , Ligands , Molecular Conformation , X-Ray Diffraction
6.
Chemistry ; 24(28): 7137-7148, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29570870

ABSTRACT

EDTA is widely used as an inhibitor of bacterial growth, affecting the uptake and control of metal ions by microorganisms. We describe the synthesis and characterisation of two symmetrical bis-amide derivatives of EDTA, featuring glycyl or pyridyl substituents: AmGly2 and AmPy2 . Metal ion affinities (logK) have been evaluated for a range of metals (Mg2+ , Ca2+ , Fe3+ , Mn2+ , Zn2+ ), revealing less avid binding compared to EDTA. The solid-state structures of AmGly2 and of its Mg2+ complex have been determined crystallographically. The latter shows an unusual 7-coordinate, capped octahedral Mg2+ centre. The antibacterial activities of the two ligands and of EDTA have been evaluated against a range of health-relevant bacterial species, three Gram negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and a Gram positive (Staphylococcus aureus). The AmPy2 ligand is the only one that displays a significant inhibitory effect against K. pneumoniae, but is less effective against the other organisms. AmGly2 exhibits a more powerful inhibitory effect against E. coli at lower concentrations than EDTA (<3 mm) or AmPy2 , but loses its efficacy at higher concentrations. The growth inhibition of EDTA and AmGly2 on mutant E. coli strains with defects in outer-membrane lipopolysaccharide (LPS) structures has been assessed to provide insight into the unexpected behaviour. Taken together, the results contradict the assumption of a simple link between metal ion affinity and antimicrobial efficacy.


Subject(s)
Amides/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Ions/chemistry , Metals/chemistry , Staphylococcus aureus/drug effects , Ligands
7.
Inorg Chem ; 56(22): 13748-13758, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29087184

ABSTRACT

Two polytopic aza-scorpiand-like ligands, 6-[7-(diaminoethyl)-3,7-diazaheptyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L1) and 6-[6'-[3,6,9-triaza-1-(2,6-pyridina)cyclodecaphan-6-yl]-3-azahexyl]-3,6,9-triaza-1-(2,6-pyridina)cyclodecaphane (L2), have been synthesized. The acid-base behavior and Cu2+, Zn2+, and Cu2+/Zn2+ mixed coordination have been analyzed by potentiometry, cyclic voltammetry, and UV-vis spectroscopy. The resolution of the crystal structures of [Cu2L2Cl2](ClO4)2·1.67H2O (1), [Cu2HL2Br2](ClO4)3·1.5H2O (2), and [CuZnL2Cl2](ClO4)2·1.64H2O (3) shows, in agreement with the solution data, the formation of homobinuclear Cu2+/Cu2+ and heterobinuclear Cu2+/Zn2+ complexes. The metal ions are coordinated within the two macrocyclic cavities of the ligand with the involvement of a secondary amino group of the bridge in the case of 1 and 3. Energy-dispersive X-ray spectroscopy confirms the 1:1 Cu2+/Zn2+ stoichiometry of 3. The superoxide dismutase (SOD) activities of the Cu2+/Cu2+ and Cu2+/Zn2+ complexes of L1 and L2 have been evaluated using nitro blue tetrazolium assays at pH 7.4. The IC50 and kcat values obtained for the [Cu2L1]4+ complex rank among the best values reported in the literature for Cu-SOD mimics. Interestingly, the binuclear Cu2+ complexes of L1 and L2 have low toxicity in cultures of mammalian cell lines and show significant antioxidant activity in a copper-dependent SOD (SOD1)-defective yeast model. The results are rationalized by taking into account the binding modes of the Cu2+ ions in the different complexes.


Subject(s)
Biomimetic Materials/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Superoxide Dismutase/chemistry , Zinc/chemistry , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Biomimetic Materials/chemical synthesis , Biomimetic Materials/pharmacology , Cell Line, Tumor , Chlorocebus aethiops , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Humans , Ligands , Molecular Structure , Oxidation-Reduction , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Superoxide Dismutase/genetics , Vero Cells
8.
Inorg Chem ; 55(15): 7564-75, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27433814

ABSTRACT

The synthesis, acid-base behavior, and Cu(2+) coordination chemistry of a new ligand (L1) consisting of an azamacrocyclic core appended with a lateral chain containing a 3-hydroxy-2-methyl-4(1H)-pyridinone group have been studied by potentiometry, cyclic voltammetry, and NMR and UV-vis spectroscopy. UV-vis and NMR studies showed that phenolate group was protonated at the highest pH values [log K = 9.72(1)]. Potentiometric studies point out the formation of Cu(2+) complexes of 1:2, 2:2, 4:3, 1:1, and 2:1 Cu(2+)/L1 stoichiometries. UV-vis analysis and electrochemical studies evidence the implication of the pyridinone moieties in the metal coordination of the 1:2 Cu(2+)/L1 complexes. L1 shows a stronger chelating ability than the reference chelating ligand deferiprone. While L1 shows no cytotoxicity in HeLa and ARPE-19 human cell lines (3.1-25.0 µg/mL), it has significant antioxidant activity, as denoted by TEAC assays at physiological pH. The addition of Cu(2+) diminishes the antioxidant activity because of its coordination to the pyridinone moiety phenolic group.


Subject(s)
Antioxidants/pharmacology , Chelating Agents/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Pyridines/chemistry , Antioxidants/chemistry , Cell Proliferation/drug effects , Chelating Agents/pharmacology , Chemistry Techniques, Synthetic , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , HeLa Cells , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Potentiometry , Pyridones/chemistry , Spectrophotometry, Ultraviolet , Structure-Activity Relationship
9.
Dalton Trans ; 44(17): 8255-66, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25851722

ABSTRACT

The formation of copper(ii) complexes with symmetrical dinucleating macrocyclic ligands containing two either monomethylated () or trimethylated () diethylenetriamine (Medien or Me3dien) subunits linked by pyridine spacers has been studied by potentiometry. Potentiometric studies show that has larger basicity than as well as higher stability of its mono- and binuclear complexes. The crystal structures of ·6HCl (), [Cu2(L1)Cl2](CF3SO3)2 (), [Cu2(L1)(OH)](ClO4)3·3H2O () and [Cu(L1)](ClO4)2 () show that adopts different coordination modes when bound to copper(ii). Whereas in , each copper(ii) is bound to one Medien subunit and to one pyridine group, in each metal center is coordinated to one 2,6-di(aminomethyl)pyridine moiety (damp) and to one aminomethyl group. The mononuclear complex shows pseudo-octahedral coordination with two weakly coordinated axial nitrogens. Kinetic studies indicate that complex decomposition is strongly dependent on the coordination mode of . Upon addition of an acid excess, all the species except [Cu2(L1)](4+) convert very rapidly to an intermediate that decomposes more slowly to copper(ii) and a protonated ligand. In contrast, [Cu2(L1)](4+) decomposes directly without the formation of any detectable intermediate. These results can be rationalized by considering that the crystal structures are maintained in solution and that the weakest Cu-N bonds are broken first, thus indicating that kinetic measurements on complex decomposition can be used to provide information about structural reorganizations in the complexes. In any case, complete decomposition of the complexes takes place in a maximum of two kinetically resolvable steps. However, minor changes in the structure of the complexes can lead to drastic changes in the kinetics of decomposition and the complexes decompose with polyphasic kinetics in which up to four different steps associated with the successive breaking of the different Cu-N bonds can be resolved.

10.
Dalton Trans ; 44(17): 7761-4, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25847794

ABSTRACT

We report a novel 1-D helical coordination polymer formed by protonated polyamine 1H-pyrazole cryptands interconnected by Cu(2+) metal ions that are able to encapsulate anionic species behaving as a multianion receptor. Switching from a monomeric receptor to a polymeric receptor is activated by metal ions and pH.

11.
Dalton Trans ; 44(7): 3378-83, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25601042

ABSTRACT

A polyazamacrocycle formed from two tris(2-aminoethyl)amine units connected by 1H-pyrazole units shows unique hexanuclear Cu(ii) complexes by combination of two binuclear Cu(ii) cryptand complexes through pyrazolate moieties belonging to both cryptands. The formation of these dimeric entities has been proven both in solution by potentiometric studies and mass spectroscopy and in the solid state by X-ray diffraction of crystals of three different batches of formulae [Cu6(H-3)2(H2O)2](TsO)6·22H2O (), [Cu6(H-3)2(NO3)2](NO3)4·2H2O () and [Cu6(H-3)2Cl2]Cl4·(C4H5N3O2)2·14.35H2O (). The hexanuclear unit in and can be viewed like three magnetically independent binuclear complexes with J = -366(3) cm(-1), g = 2.08(1) for and J = -360(3) cm(-1), g = 2.07(1) for .

12.
Inorg Chem ; 52(19): 10795-803, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24041115

ABSTRACT

The synthesis of a novel cyclophane (L1) consisting of a 1H-pyrazole moiety linked through methylene groups to a 1,5,9,13-tetraazadecane chain is described. As far as we know, this is one of the first reported syntheses of a [1 + 1] condensation 1H-pyrazole azamacrocyclic ligand. The crystal structures of the complexes [Cu2(H(H(-1)L1))(H(-1)L1)](ClO4)3·3.75H2O (1) and ([Cu2(H(H(-1)L1))(0.5)(H(-1)L1)(1.5)]2(ClO4)3Br2·4.2H2O (2) show that Cu(2+) coordination leads to formation of 2:2 Cu(2+):L dinuclear dimeric complexes in which the 1H-pyrazole units lose a proton behaving as bis(monodentate) bridging ligands. Unlike previously reported complexes of [2 + 2] pyrazole azamacrocycles, the pyrazolate units in 1 are pointing outward from the macrocyclic cavity to bind the Cu(2+) ions. Inner coordination with formation of 1:1 Cu(2+):L complexes is however observed in [1 + 1] pyridine azamacrocycles as shown by the crystal structure here presented of the complex [CuL2](ClO4)2 (3). Crystals of [Cu3(H(-1)L1)2(CO3)(H2O)](ClO4)2·8H2O (4) grown by evaporating aqueous solution at pH 9 containing Cu(2+) and L1 in 3:2 molar ratio show the presence of a further Cu(2+) coordinated to the two free amine groups found in structures 1 and 2. The metal ion fills its coordination sphere capturing atmospheric CO2 as a η(1),η(2)-bidentate carbonate anion placed in the equatorial position and an axial water molecule. pH-metric data, UV-vis spectroscopic data, EPR measurements, and HR-ESI-MS data support that the outer coordination mode with formation of 2:2 dinuclear dimeric and 3:2 trinuclear complexes is preserved in aqueous solution.


Subject(s)
Aza Compounds/chemistry , Carbon Dioxide/chemistry , Macrocyclic Compounds/chemistry , Pyrazoles/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...