Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(11): e21589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027675

ABSTRACT

Dengue fever has been a significant disease in Thailand for a long time, ranking it as one of the major health problems in the country. Management of the adult stage of mosquito vectors is approached by applying various synthetic chemicals such as adulticides, attractants, deterrents, and repellents. In Thailand, mosquito control and personal protection from mosquito bites are currently the most important measures for preventing and controlling mosquito-borne diseases. Although there are various control strategies for dengue disease, participation from the local community plays a vital role in the success of disease control. At present, a lot of local people have seen the value of local indigenous knowledge and used this to improve their life. The local community in the southern part of Thailand has used mosquito repellent from local knowledge for a long time. The problem regarding mosquito repellent made from local indigenous knowledge is that it has not yet been tested to determine its effectiveness. Therefore, this research aims to assess the effectiveness of mosquito repellent from local learning from Nakhon Si Thammarat provinces in Thailand. From the survey, out of 23 districts, six mosquito repellents were found in 3 communities, including Nabon, Muang, and Thasala. The repellent efficacy against the laboratory strain of Aedes aegypti by using the human-bait technique of the WHO (1996) standard method, with slight modifications. Approximately 0.1 ml of each test sample was applied evenly onto a 30 cm2 test site on one forearm of each human volunteer. Exposure experiments continued at 30 min intervals until at least two bites occurred in a 3-min period, or when a first bite was followed by a confirming bite (second bite) in the subsequent observation period. Each test was duplicated on different days for the two human volunteers. The result shows that three mosquito repellents made from local indigenous knowledge that have protection that lasts for more than 2 h are Ban Ko Sa Child Development Center's citronella spray (Nabon district, Kaew Saen subdistrict), Khun Lang's citronella spray, and Khun Lang's citronella ointment (Muang district, Pak Phun subdistrict). The result of this research was reported back to the local community to re-evaluate their self-reliance on their protection against mosquito biting.

2.
Acta Trop ; 232: 106494, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35508270

ABSTRACT

Antennae and maxillary palpi are the most important sensory organs involved in the behaviors of black flies. The ultrastructure of sensilla on these sensory appendages of two human-biting black fly species, Similium nigrogilvum and Simulium umphangense, was studied for the first time. Wild adult females of both species were collected in Umphang District, Tak Province, western Thailand. The morphology and distribution of sensilla were examined using scanning electron microscopy. Overall, the morphology of the antennae and maxillary palpi and distribution of sensilla are similar in the two species. Four major types of sensilla were found on the antennae of both species: sensilla basiconica (three subtypes), coeloconica, chaetica (four subtypes), and trichodea. However, sensilla basiconica subtype IV are only present on the antennal surface of S. nigrogilvum. Sensilla trichodea are the most abundant among the four types of sensilla that occur on the antennae of both species. Significant differences in the length of the antennae (scape and flagellomere IX), length of the maxillary palpi (whole and palpal segments I, III, IV and V), and the length and basal width of four sensilla types (trichodea, chaetica, basiconica, and coeloconica) were found. In addition, two types of sensilla were observed on the maxillary palpi: sensilla chaetica (three subtypes) and bulb-shaped sensilla. Differences were observed in the numbers of bulb-shaped sensilla in the sensory vesicles of S. nigrogilvum and S. umphangense. The findings are compared with the sensilla of other insects, and the probable functions of each sensillum type are discussed. The anatomical data on sensory organs derived from this study will help to better understand black fly behavior.


Subject(s)
Sensilla , Simuliidae , Animals , Arthropod Antennae , Female , Humans , Microscopy, Electron, Scanning , Sensilla/ultrastructure , Thailand
3.
PLoS One ; 16(11): e0260333, 2021.
Article in English | MEDLINE | ID: mdl-34843516

ABSTRACT

Mosquitoes are hematophagous insects that transmit parasites and pathogens with devastating effects on humans, particularly in subtropical regions. Different mosquito species display various behaviors, breeding sites, and geographic distribution; however, they can be difficult to distinguish in the field due to morphological similarities between species and damage caused during trapping and transportation. Vector control methods for controlling mosquito-borne disease epidemics require an understanding of which vector species are present in the area as well as the epidemiological patterns of disease transmission. Although molecular techniques can accurately distinguish between mosquito species, they are costly and laborious, making them unsuitable for extensive use in the field. Thus, alternative techniques are required. Geometric morphometrics (GM) is a rapid and inexpensive technique that can be used to analyze the size, shape, and shape variation of individuals based on a range of traits. Here, we used GM to analyze the wings of 1,040 female mosquitoes from 12 different species in Thailand. The right wing of each specimen was removed, imaged microscopically, and digitized using 17 landmarks. Wing shape variation among genera and species was analyzed using canonical variate analysis (CVA), while discriminant function analysis was used to cross-validate classification reliability based on Mahalanobis distances. Phenetic relationships were constructed to illustrate the discrimination patterns for genera and species. CVA of the morphological variation among Aedes, Anopheles, Armigeres, Culex, and Mansonia mosquito genera revealed five clusters. In particular, we demonstrated a high percentage of correctly-distinguished samples among Aedes (97.48%), Armigeres (96.15%), Culex (90.07%), and Mansonia (91.67%), but not Anopheles (64.54%). Together, these findings suggest that wing landmark-based GM analysis is an efficient method for identifying mosquito species, particularly among the Aedes, Armigeres, Culex, and Mansonia genera.


Subject(s)
Culicidae/anatomy & histology , Mosquito Vectors/anatomy & histology , Wings, Animal/anatomy & histology , Animals , Culicidae/classification , Female , Image Processing, Computer-Assisted , Mosquito Vectors/classification , Software , Thailand
4.
Acta Trop ; 224: 106140, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34562429

ABSTRACT

Black flies (Diptera: Simuliidae) are known as vectors of disease agents in humans and livestock, with some species being vectors of Onchocerca volvulus, the filarial nematode that is the causative agent of human onchocerciasis. Nematode infections in adult female black flies have been reported from some areas in northern and western Thailand, but not from other regions of Thailand. In this study, wild-caught adult female black flies from the central region of Thailand were examined for infections with nematodes. Collections of adult females were carried out at Khlong Lan district, Kamphaeng Phet province, central Thailand. A molecular approach, based on the mitochondrial (cox1, 12S rRNA) and nuclear (18S rRNA) genes, was used to identify the species of nematodes recovered from the specimens collected. A total of 911 wild-caught adult black flies were collected. Simulium nigrogilvum was the most abundant species (n = 708), followed by S. doipuiense complex (n = 179), S. chamlongi (n = 11), S. umphangense (n = 10), S. chumpornense (n = 1), S. multistriatum species-group (n = 1), and S. maewongense (n = 1). Nematode infections were detected in nine specimens of S. nigrogilvum, of which two were positive for filarial worms (one worm each, infection rate 0.28%) and seven were positive for non-filarial nematodes (11 worms in total, infection rate 0.99%). The two filarial nematodes (third-stage larvae) were identified molecularly as Onchocerca species type I, while the 11 non-filarial nematodes were classified into ascaridoid (n = 2), tylenchid (n = 6) and mermithid (n = 3) nematodes. The results of this study demonstrated that adult female S. nigrogilvum were parasitized with diverse nematodes (filarial and non-filarial). Detection of the infective larvae of Onchocerca sp. type I in S. nigrogilvum confirms that occurrence of zoonotic onchocerciasis is highly possible in Thailand. Additional in-depth investigation of the morphology, life cycle and host-parasite relationship of nematodes that parasitized this black fly host is still needed.


Subject(s)
Bites and Stings , Onchocerciasis , Simuliidae , Animals , Female , Humans , Onchocerca/genetics , Onchocerciasis/epidemiology , Thailand
5.
Insects ; 12(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208936

ABSTRACT

Ligusticum sinense Oliv. cv. is a species of Umbelliferae (Apiaceae), a large plant family in the order Apiales. In this study, L. sinense hexane extract nanoemulsion gel (LHE-NEG) was investigated for mosquito repellency and compared to the standard chemical, N,N-diethyl-3-methylbenzamide (DEET), with the goal of developing a natural alternative to synthetic repellents in protecting against mosquito vectors. The results demonstrated that LHE-NEG afforded remarkable repellency against Aedes aegypti, Anopheles minimus, and Culex quinquefasciatus, with median protection times (MPTs) of 5.5 (4.5-6.0), 11.5 (8.5-12.5), and 11.25 (8.5-12.5) h, respectively, which was comparable to those of DEET-nanoemulsion gel (DEET-NEG: 8.5 (7.0-9.0), 12.0 (10.0-12.5), and 12.5 (10.0-13.5) h, respectively). Evaluation of skin irritation in 30 human volunteers revealed no potential irritant from LHE-NEG. The physical and biological stability of LHE-NEG were determined after being kept under heating/cooling cycle conditions. The stored samples of LHE-NEG exhibited some changes in appearance and differing degrees of repellency between those kept for 3 and 6 heating/cooling cycles, thus providing slightly shorter MPTs of 4.25 (4.0-4.5) and 3.25 (2.5-3.5) h, respectively, when compared to those of 5.0 (4.5-6.0) h in fresh preparation. These findings encourage commercially developed LHE-based products as an alternative to conventional synthetic repellents in preventing mosquito bites and helping to interrupt mosquito-borne disease transmission.

6.
J Med Entomol ; 58(3): 1298-1315, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33570125

ABSTRACT

Previous work presented the profound antimosquito potential of Petroselinum crispum essential oil (PEO) against either the pyrethroid-susceptible or resistant strains of Aedes aegypti. This plant oil also inhibited the activity of acetylcholinesterase and mixed-function oxidases significantly, thus suggesting its potential as a synergist for improving mosquitocidal efficacy of insecticidal formulations. This study investigated the chemical composition, larvicidal activity, and potential synergism with synthetic insecticides of PEO and its main compounds for the purpose of interacting with insecticide resistance in mosquito vectors. The chemical profile of PEO, obtained by GC-MS analysis, showed a total of 17 bioactive compounds, accounting for 99.09% of the whole oil, with the most dominant constituents being thymol (74.57%), p-cymene (10.73%), and γ-terpinene (8.34%). All PEO constituents exhibited promising larvicidal effects, with LC50 values ranging from 19.47 to 59.75 ppm against Ae. aegypti, in both the pyrethroid-susceptible and resistant strains. Furthermore, combination-based bioassays revealed that PEO, thymol, p-cymene, and γ-terpinene enhanced the efficacy of temephos and deltamethrin significantly. The most effective synergist with temephos was PEO, which reduced LC50 values to 2.73, 4.94, and 3.28 ppb against MCM-S, PMD-R, and UPK-R, respectively, with synergism ratio (SR) values of 1.33, 1.38, and 2.12, respectively. The best synergist with deltamethrin also was PEO, which reduced LC50 values against MCM-S, PMD-R, and UPK-R to 0.008, 0.18, and 2.49 ppb, respectively, with SR values of 21.25, 9.00, and 4.06, respectively. This research promoted the potential for using essential oil and its principal constituents as not only alternative larvicides, but also attractive synergists for enhancing efficacy of existing conventional insecticides.


Subject(s)
Aedes , Insecticides , Mosquito Control , Nitriles , Oils, Volatile , Petroselinum/chemistry , Pyrethrins , Temefos , Aedes/growth & development , Animals , Larva/growth & development
7.
Acta Trop ; 211: 105625, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32649996

ABSTRACT

Three new species of black flies from Thailand, Simulium wangkwaiense, S. tadtonense and S. maeklongkeense, are described based on their adults, pupal exuviae and cocoons. All three new species are assigned to the Simulium (Simulium) striatum species-group, bringing its total number in Thailand to seven. Simulium wangkwaiense sp. nov. is the species formerly called S. quinquestriatum in Thailand. Certain male and pupal morphological characteristics are shown to separate all seven Thai species of this species-group. All of the three new species have been analyzed genetically for their phylogenetic relationships, with three known related species (except for S. thailandicum), by using the fast-evolving nuclear big zinc finger (BZF) gene.


Subject(s)
Phylogeny , Simuliidae/classification , Animals , Female , Larva/anatomy & histology , Male , Pupa/anatomy & histology , Simuliidae/anatomy & histology , Simuliidae/genetics , Species Specificity , Thailand
8.
Insects ; 10(6)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234357

ABSTRACT

Blow flies (Diptera: Calliphoridae) and the house fly (Diptera: Muscidae) are filth flies of medical importance, and control of their population is needed. As insecticide applications have resulted in fly resistance, and the exploration of plant essential oils (EOs) has increased against filth flies, this study assessed the combination of EOs with pyrethoids to enhance toxic efficacy. The EOs of five effective plants were screened initially against the house fly (Musca domestica L.). Their chemical constituent was performed using gas chromatography-mass spectrometry (GC-MS) analysis. The main components of Boesenbergia rotunda (Zingiberaceae) rhizome, Curcuma longa (Zingiberaceae) rhizome, Citrus hystrix (Rutaceae) fruit peel, Ocimum gratissimum (Lamiaceae) seed, and Zanthoxylum limonella (Rutaceae) fruit were δ-3-caren (35.25%), ß-turmerone (51.68%), ß-pinene (26.56%), p-cumic aldehyde (58.21%), and dipentene (60.22%), respectively. The screening test revealed that the three most effective plant EOs were from B. rotunda, C. longa and O. gratissimum, which were selected for the combination with two pyrethroid insecticides (permethrin and deltamethrin), in order to enhance their synergistic efficacy against the blow flies, Chrysomya megacephala Fabricius, Chrysomya rufifacies Macquart, and Lucilia cuprina Wiedemann, and the house fly. Synergistic action was presented in almost all of the flies tested with permenthrin/deltamethrin/EOs mixtures. It was interesting that the combination of deltamethrin with three EOs showed a synergistic effect on all of the tested flies. However, an antagonistic effect was observed in C. megacephala and M. domestica treated with permethrin-B. rotunda and C. megacephala treated with permethrin-O. gratissimum. The LD50 of insecticides decreased when combined with plant EOs. This alternative strategy will be helpful in developing a formula for effective fly control management.

9.
Insects ; 10(1)2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30586929

ABSTRACT

In ongoing screening research for edible plants, Petroselinum crispum essential oil was considered as a potential bioinsecticide with proven antimosquito activity against both the pyrethroid susceptible and resistant strains of Aedes aegypti. Due to the comparative mosquitocidal efficacy on these mosquitoes, this plant essential oil is promoted as an attractive candidate for further study in monitoring resistance of mosquito vectors. Therefore, the aim of this study was to evaluate the impact of P. crispum essential oil on the biochemical characteristics of the target mosquito larvae of Ae. aegypti, by determining quantitative changes of key enzymes responsible for xenobiotic detoxification, including glutathione-S-transferases (GSTs), α- and ß-esterases (α-/ß-ESTs), acetylcholinesterase (AChE), acid and alkaline phosphatases (ACP and ALP) and mixed-function oxidases (MFO). Three populations of Ae. aegypti, comprising the pyrethroid susceptible Muang Chiang Mai-susceptible (MCM-S) strain and the pyrethroid resistant Pang Mai Dang-resistant (PMD-R) and Upakut-resistant (UPK-R) strains, were used as test organisms. Biochemical study of Ae. aegypti larvae prior to treatment with P. crispum essential oil revealed that apart from AChE, the baseline activity of most defensive enzymes, such as GSTs, α-/ß-ESTs, ACP, ALP and MFO, in resistant UPK-R or PMD-R, was higher than that determined in susceptible MCM-S. However, after 24-h exposure to P. crispum essential oil, the pyrethroid susceptible and resistant Ae. aegypti showed similarity in biochemical features, with alterations of enzyme activity in the treated larvae, as compared to the controls. An increase in the activity levels of GSTs, α-/ß-ESTs, ACP and ALP was recorded in all strains of P. crispum oil-treated Ae. aegypti larvae, whereas MFO and AChE activity in these mosquitoes was decreased. The recognizable larvicidal capability on pyrethroid resistant Ae. aegypti, and the inhibitory effect on AChE and MFO, emphasized the potential of P. crispum essential oil as an attractive alternative application for management of mosquito resistance in current and future control programs.

10.
Parasit Vectors ; 11(1): 417, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30005688

ABSTRACT

BACKGROUND: In a previous screening program for mosquitocides from local edible plants in Thailand, essential oils (EOs) of Cyperus rotundus, Alpinia galanga and Cinnamomum verum, were found to possess promising adulticidal activity against Aedes aegypti. With the aim of reducing usage of conventional insecticides and improving the management of resistant mosquito populations, this study was designed to determine the potential synergism in the adulticidal efficacy of EOs on permethrin toxicity against Ae. aegypti, both pyrethroid-resistant and -susceptible strains. METHODS: EOs extracted from rhizomes of C. rotundus and A. galanga as well as C. verum barks were evaluated for chemical compositions and adulticidal activity against Muang Chiang Mai-susceptible (MCM-S) and Pang Mai Dang-resistant (PMD-R) strains of Ae. aegypti. Adulticidal bioassays of EO-permethrin mixtures for synergistic activity were also performed on these Ae. aegypti strains. RESULTS: Chemical characterization by the GC-MS analytical technique demonstrated that 48 compounds were identified from the EOs of C. rotundus, A. galanga and C. verum, representing 80.22%, 86.75% and 97.24%, respectively, of all compositions. Cyperene (14.04%), ß-bisabolene (18.27%) and cinnamaldehyde (64.66%) were the main constituents of C. rotundus, A. galanga and C. verum oils, respectively. In adulticidal bioassays, EOs of C. rotundus, A. galanga and C. verum were effective in killing Ae. aegypti, both MCM-S and PMD-R strains, with LD50 values of 10.05 and 9.57 µg/mg female, 7.97 and 7.94 µg/mg female, and 3.30 and 3.22 µg/mg female, respectively. The adulticidal efficacy against MCM-S and PMD-R Ae. aegypti of these EOs was close to that of piperonyl butoxide (PBO, LD50 values = 6.30 and 4.79 µg/mg female, respectively) but less pronounced than that of permethrin (LD50 values = 0.44 and 3.70 ng/mg female, respectively). Nevertheless, combination-based bioassays discovered the accomplished synergism of EOs together with permethrin. Significant synergistic effects with permethrin against both the strains of Ae. aegypti were recorded in the EOs of C. rotundus and A. galanga. Addition of C. rotundus and A. galanga oils decreased the LD50 values of permethrin against MCM-S dramatically from 0.44 to 0.07 and 0.11 ng/mg female, respectively, with synergism ratio (SR) values of 6.28 and 4.00, respectively. Furthermore, EOs of C. rotundus and A. galanga also reduced the LD50 values of permethrin against PMD-R drastically from 3.70 to 0.42 and 0.003 ng/mg female, respectively, with SR values of 8.81 and 1233.33, respectively. CONCLUSIONS: The synergy of enhanced adulticidal toxicity recorded from EO-permethrin combinations against both strains of Ae. aegypti presents a promising role of EOs as a synergist for improving mosquitocidal efficacy, particularly in situations where conventional compounds are ineffective or inappropriate.


Subject(s)
Aedes , Cinnamomum zeylanicum/chemistry , Insecticides , Mosquito Control/methods , Oils, Volatile/pharmacology , Permethrin/pharmacology , Alpinia/chemistry , Animals , Cyperus/chemistry , Drug Synergism , Female , Gas Chromatography-Mass Spectrometry , Insecticide Resistance/drug effects , Lethal Dose 50 , Oils, Volatile/chemistry
11.
Parasit Vectors ; 9(1): 373, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27357395

ABSTRACT

BACKGROUND: Angelica sinensis (Oliv.) hexane extract (AHE) has been reported as a proven and impressive repellent against laboratory-reared female Aedes aegypti mosquitoes. With the aim of promoting products of plant origin as a viable alternative to conventional synthetic substances, this study was designed to transform AHE-based repellents for exploitable commercial production by enhancing their efficacy and assessing their physical and biological stability as well as repellency against mosquitoes under laboratory and field conditions. METHODS: The chemical profile of AHE was analyzed by qualitative gas chromatography-mass spectrometry (GC-MS) technique. AHE was supplemented with vanillin, as a fixative, and then investigated for repellency and comparison to the standard synthetic repellent, DEET, under both laboratory and field conditions. Determination of physical and biological stability as a repellent was carried out after keeping AHE samples under varying temperatures and for different storage times. RESULTS: GC-MS analysis revealed that AHE contained at least 21 phytochemical compounds, constituting 95.74 % of the total content, with the major constituent of 3-N-butylphthalide (66.67 %). Ethanolic formulations of AHE and DEET showed improvement of repellency in a dose-dependent manner when vanillin was added in laboratory assessment. While 5-25 % AHE alone provided median complete-protection times of 2.0-6.5 h against Ae. aegypti, these times were increased to 4.0-8.5 h with a combination of AHE and 5 % vanillin (AHEv). Protection times against Ae. aegypti were extended from 2.25 to 7.25 h to 4.25-8.25 h when 5-25 % DEET was combined with 5 % vanillin (DEETv). In determining stability, all stored AHE samples exhibited similar characteristics such as liquid phases with aromatic odor comparable to those of fresh preparations. Furthermore, repellent activity of stored AHE samples lasted for at least six months, with varied efficacy (4.5-10.0 h) against Ae. aegypti. Field trials revealed strong repellency from both 25 % AHEv and 25 % DEETv, with complete protection (100 %) against a wide range of local mosquito populations. A total of 5,718 adult female mosquitoes, with the most predominant being Culex quinquefasciatus (41.47 %), Armigeres subalbatus (41.13 %), and Culex vishnui (10.53 %), was collected during field applications. No local skin reaction or other allergic responses was observed during both laboratory and field study periods. CONCLUSIONS: Angelica sinensis proved to have not only impressive repellency against both laboratory Ae. aegypti and a wide range of natural mosquito populations, but also relative stability in physical and biological performance.


Subject(s)
Angelica sinensis/chemistry , Culicidae/drug effects , Insect Repellents/pharmacology , Animals , Benzofurans/chemistry , Female , Humans , Insect Repellents/chemistry , Linoleic Acid/chemistry , Male , Molecular Structure , Phthalic Anhydrides/chemistry , Plant Extracts/pharmacology , Thailand
12.
Malar J ; 14: 307, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26249666

ABSTRACT

BACKGROUND: For personal protection against mosquito bites, user-friendly natural repellents, particularly from plant origin, are considered as a potential alternative to applications currently based on synthetics such as DEET, the standard chemical repellent. This study was carried out in Thailand to evaluate the repellency of Ligusticum sinense hexane extract (LHE) against laboratory Anopheles minimus and Aedes aegypti, the primary vectors of malaria and dengue fever, respectively. METHODS: Repellent testing of 25% LHE against the two target mosquitoes; An. minimus and Ae. aegypti, was performed and compared to the standard repellent, DEET, with the assistance of six human volunteers of either sex under laboratory conditions. The physical and biological stability of LHE also was determined after keeping it in conditions that varied in temperature and storage time. Finally, LHE was analysed chemically using the qualitative GC/MS technique in order to demonstrate a profile of chemical constituents. RESULTS: Ethanol preparations of LHE, with and without 5% vanillin, demonstrated a remarkably effective performance when compared to DEET in repelling both An. minimus and Ae. aegypti. While 25% LHE alone provided median complete-protection times against An. minimus and Ae. aegypti of 11.5 (9.0-14.0) hours and 6.5 (5.5-9.5) hours, respectively, the addition of 5% vanillin increased those times to 12.5 (9.0-16.0) hours and 11.0 (7.0-13.5) hours, respectively. Correspondingly, vanillin added to 25% DEET also extended the protection times from 11.5 (10.5-15.0) hours to 14.25 (11.0-18.0) hours and 8.0 (5.0-9.5) hours to 8.75 (7.5-11.0) hours against An. minimus and Ae. aegypti, respectively. No local skin reaction such as rash, swelling or irritation was observed during the study period. Although LHE samples kept at ambient temperature (21-35°C), and 45°C for 1, 2 and 3 months, demonstrated similar physical characteristics, such as similar viscosity and a pleasant odour, to those that were fresh and stored at 4°C, their colour changed from light- to dark-brown. Interestingly, repellency against Ae. aegypti of stored LHE was presented for a period of at least 3 months, with insignificantly varied efficacy. Chemical analysis revealed that the main components of LHE were 3-N-butylphthalide (31.46%), 2, 5-dimethylpyridine (21.94%) and linoleic acid (16.41%), constituting 69.81% of all the extract composition. CONCLUSIONS: LHE with proven repellent efficacy, no side effects on the skin, and a rather stable state when kept in varied conditions is considered to be a potential candidate for developing a new natural alternative to DEET, or an additional weapon for integrated vector control when used together with other chemicals/measures.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Insect Repellents/pharmacology , Ligusticum/chemistry , Mosquito Control/methods , Adult , Animals , Female , Humans , Male , Plant Extracts/pharmacology , Species Specificity , Young Adult
13.
J Vector Ecol ; 35(1): 106-15, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20618656

ABSTRACT

The chemical compositions and larvicidal potential against mosquito vectors of selected essential oils obtained from five edible plants were investigated in this study. Using a GC/MS, 24, 17, 20, 21, and 12 compounds were determined from essential oils of Citrus hystrix, Citrus reticulata, Zingiber zerumbet, Kaempferia galanga, and Syzygium aromaticum, respectively. The principal constituents found in peel oil of C. hystrix were beta-pinene (22.54%) and d-limonene (22.03%), followed by terpinene-4-ol (17.37%). Compounds in C. reticulata peel oil consisted mostly of d-limonene (62.39%) and gamma-terpinene (14.06%). The oils obtained from Z. zerumbet rhizome had alpha-humulene (31.93%) and zerumbone (31.67%) as major components. The most abundant compounds in K. galanga rhizome oil were 2-propeonic acid (35.54%), pentadecane (26.08%), and ethyl-p-methoxycinnamate (25.96%). The main component of S. aromaticum bud oil was eugenol (77.37%), with minor amounts of trans-caryophyllene (13.66%). Assessment of larvicidal efficacy demonstrated that all essential oils were toxic against both pyrethroid-susceptible and resistant Ae. aegypti laboratory strains at LC50, LC95, and LC99 levels. In conclusion, we have documented the promising larvicidal potential of essential oils from edible herbs, which could be considered as a potentially alternative source for developing novel larvicides to be used in controlling vectors of mosquito-borne disease.


Subject(s)
Aedes/drug effects , Insecticides/chemistry , Insecticides/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Pyrethrins/pharmacology , Animals , Gas Chromatography-Mass Spectrometry , Larva/drug effects
14.
Parasitol Res ; 101(5): 1337-44, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17659361

ABSTRACT

Seventeen isolines of Anopheles barbirostris derived from animal-biting female mosquitoes showed three karyotypic forms: Form A (X2, Y1) in five isolines from Phetchaburi province; Form B (X1, X3, Y2) in three and eight isolines from Chiang Mai and Ubon Ratchathani provinces, respectively; Form C (X2, Y3) in one isoline from Phetchaburi province. All 17 isolines exhibited an average branch summation of seta 2-VI pupal skins ranging from 12.1-13.0 branches, which was in the limit of A. barbirostris (6-18 branches). Of the 12 human-biting isolines from Chiang Mai province, five isolines showed Form B (X2, Y2), and seven isolines exhibited a new karyotypic form designated as Form E (X2, Y5). All of 12 isolines had an average branch summation of seta 2-VI pupal skins ranging from 22.4-24.5 branches, which was in the limit of Anopheles campestris (17-58 branches). Thus, they were tentatively designated as A. campestris-like Forms B and E. Hybridization between A. campestris-like Forms B and E showed that they were genetically compatible, yielding viable progeny for several generations suggesting conspecific relationships of these two karyotypic forms. Reproductive isolation among crosses between A. campestris-like Form B and A. barbirostris Forms A, B, and C strongly suggested the existence of these two species. In addition, the very low intraspecific variation (genetic distance<0.005) of the nucleotide sequence of ITS2 of the rDNA and COI and COII of mitochondrial DNA of the seven isolines of A. campestris-like Forms B and E supported their conspecific relationship. The large sequence divergence of ITS2 (0.203-0.268), COI (0.026-0.032), and COII (0.030-0.038) from genomic DNA of A. campestris-like Forms B and E and the A. barbirostris Forms A, B, and C clearly supported cytogenetic and morphological evidence.


Subject(s)
Anopheles/classification , Anopheles/genetics , Animals , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Hybridization, Genetic , Karyotyping , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Thailand
15.
Parasitol Res ; 100(4): 729-37, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17096143

ABSTRACT

Chemical analysis on Curcuma zedoaria rhizome volatile oil, using gas chromatography-mass spectrometer techniques, demonstrated the presence of beta-tumerone (19.88%), 1,8-cineole (8.93%), and 7-zingiberene (7.84%) as major constituents. Larvicidal efficacy against Aedes aegypti mosquitoes of zedoary oil and its formulated preparation, zedoary oil-impregnated sand granules, were investigated and compared with that of Abate(R)sand (temephos). Zedoary oil exhibited pronounced potential against the fourth instar larvae of A. aegypti with an LC(50) and LC(99) of 33.45 and 83.39 ppm, respectively. Application of zedoary oil at a dosage yielding ten times that of LC(99) offered complete larval mortality (100% mortality) for a period of 3 days, and the larval mortality subsequently decreased to lower than 50% after application for more than 5 days. Zedoary oil-impregnated sand granules provided remarkably longer activity, with a larval mortality of 100% for a period of 9 days; and mortality below 50% was obtained in week 3 of application. The complete larval mortality that resulted from applying temephos at dosages of 0.1 and 1 ppm persisted for a period of 6 days and 4 weeks, respectively, and the larval mortality below 50% was reported on day 18 and week 11, respectively. Testing A. aegypti species against stored samples of zedoary oil-impregnated sand granules demonstrated that the product stored at 4 degrees C showed the longest larvicidal activity, followed by those kept at ambient temperature and 45 degrees C, yielding a complete larval mortality for 9, 8, and 6 days, respectively. Most samples of zedoary oil-impregnated sand granules stored at each temperature for 1 month showed slightly higher efficacy than those kept for 2 months. The larvicidal efficacy of samples stored at 4 degrees C seemed to be comparable to that of the fresh sample. The efficacy in killing A. aegypti larvae and good biological stability of zedoary oil-impregnated sand granules make this product promising as an alternative to essential oil in the development of new botanical natural larvicide for use in mosquito control programs.


Subject(s)
Aedes/drug effects , Curcuma/chemistry , Insecticides/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Animals , Insecticides/chemistry , Larva/drug effects , Silicon Dioxide
16.
J Vector Ecol ; 31(1): 138-44, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16859102

ABSTRACT

Ethanolic extracts derived from three species of the Piperaceae (pepper) family, Piper longum L., P. ribesoides Wall., and P. sarmentosum Roxb. ex Hunt., were evaluated for efficacy against early 4th instar larvae of Aedes aegypti mosquitoes using larvicidal bioassays. The highest larvicidal efficacy was established from P. longum, followed by P. sarmentosum and P. ribesoides, with LC50 values of 2.23, 4.06, and 8.13 ppm, respectively. Observations of morphological alterations on treated 4th instar larvae revealed that most organs, except anal papillae, had a normal structural appearance that was similar to controls. Under light microscopy, the internal structures of anal papillae in the treated larvae showed shrinkage, while the external features were normal in appearance. Ultrastructural studies, however, clearly demonstrated external destruction, with extensive damage and shrunken cuticle of the anal papillae. The structural deformation of anal papillae probably led to their dysfunction, which may be intrinsically associated with the death of the larvae. This study affords some evidence regarding the action site of the pepper extracts and suggests their potential in developing new types of larvicides used for mosquito control.


Subject(s)
Aedes , Insecticides , Piper/chemistry , Aedes/ultrastructure , Animals , Ethanol/chemistry , Larva , Lethal Dose 50 , Microscopy, Electron, Scanning , Mosquito Control , Plant Extracts
17.
Parasitol Res ; 99(6): 715-21, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16738885

ABSTRACT

Essential oils derived from five plant species, celery (Apium graveolens), caraway (Carum carvi), zedoary (Curcuma zedoaria), long pepper (Piper longum), and Chinese star anise (Illicium verum), were subjected to investigation of adulticidal activity against mosquito vectors. Two populations of Aedes aegypti, the laboratory and natural field strains, collected in Chiang Mai province, northern Thailand were tested in pyrethroid-susceptibility bioassays. The results revealed that the natural field strain of A. aegypti was resistant to permethrin, with mortality rates ranging from 51 to 66%. A mild susceptibility, with mortality rates ranging from 82 to 88%, was observed in the natural field strain of A. aegypti exposed to lambdacyhalothrin, which suggested that this strain was tolerant and might be resistant to this insecticide. However, laboratory-reared A. aegypti exposed to discriminating dosages of permethrin and lambdacyhalothrin induced 100% mortality in all cases, thus indicating complete susceptibility of this strain to these insecticides. The adulticidal activity determined by topical application revealed that all five essential oils exerted a promising adulticidal efficacy against both laboratory and natural field strains of A. aegypti. Although the laboratory strain was slightly more susceptible to these essential oils than the natural field strain, no statistically significant difference was observed. Moreover, comparison of the adulticidal activity indicated that the performance of these essential oils against the two strains of A. aegypti was similar. The highest potential was established from caraway, followed by zedoary, celery, long pepper, and Chinese star anise, with an LC(50) in the laboratory strain of 5.44, 5.94, 5.96, 6.21, and 8.52 microg/mg female, respectively, and 5.54, 6.02, 6.14, 6.35, and 8.83 microg/mg female, respectively, in the field strain. These promising essential oils are, therefore, an alternative in developing and producing mosquito adulticides as an effective measure used in controlling and eradicating mosquito vectors.


Subject(s)
Aedes , Insecticides , Mosquito Control/methods , Oils, Volatile , Animals , Female , Lethal Dose 50 , Plant Oils , Plants/chemistry , Thailand
18.
Rev Inst Med Trop Sao Paulo ; 48(1): 33-7, 2006.
Article in English | MEDLINE | ID: mdl-16547577

ABSTRACT

Three Piper species, Piper longum, P. ribesoides and P. sarmentosum, were selected for investigation of adulticidal potential against Stegomyia aegypti, a main vector of dengue and dengue haemorrhagic fever. Successive extraction by maceration with 95% ethanol showed percentage yields of ethanolic extracts, which derived from P. longum, P. ribesoides and P. sarmentosum, of 8.89, 3.21 and 5.30% (w/w), respectively. All Piper extracts illustrated an impressive adulticidal activity when tested against female mosquitoes by topical application. The susceptibility of St. aegypti females to ethanol-extracted Piper was dose dependent and varied among the plant species. The highest adulticidal effect was established from P. sarmentosum, followed by P. ribesoides and P. longum, with LD50 values of 0.14, 0.15 and 0.26 microg/female, respectively. The potential of these Piper species, as possible mosquitocides, established convincing activity for further researches to develop natural substances for combat against adult mosquitoes.


Subject(s)
Culicidae , Insect Vectors , Insecticides , Piper/chemistry , Animals , Female , Plant Extracts/pharmacology
19.
Rev. Inst. Med. Trop. Säo Paulo ; 48(1): 33-37, Jan.-Feb. 2006. ilus, tab
Article in English | LILACS | ID: lil-423332

ABSTRACT

Três espécies de Piper, Piper longum, P. ribesoides e P. sarmentosum, foram selecionadas para investigação da potencialidade contra Stegomyia aegypti adultos, principal vetor de dengue e febre do dengue hemorrágico. Sucessivas extrações por maceração com etanol a 95% mostraram uma porcentagem de extratos etanólicos, derivados de P. longum, P. ribesoides e P. sarmentosum, de 8,89, 3,21 e 5,30% (w/w), respectivamente. Todos os extratos de Piper mostraram atividade adulticida expressiva quando testados contra fêmeas de mosquitos através de aplicação tópica. A suscetibilidade das fêmeas do St. aegypt ao extrato de Piper etanólico foi dose dependente e variou entre as espécies de plantas. O mais elevado efeito adulticida foi demonstrado a partir do P. sarmentosum, seguido pelo P. ribesoides e P. longum, valores LD50 de 0,14, 0,15 e 0,26 µg/fêmea, respectivamente. O potencial destas espécies de Piper, como possíveis mosquiticidas, estabeleceu atividade convincente para futuras pesquisas a fim de desenvolver substâncias naturais para o combate a mosquitos adultos.


Subject(s)
Animals , Female , Culicidae , Insect Vectors , Insecticides , Piper/chemistry , Plant Extracts/pharmacology
20.
Trop Med Int Health ; 10(11): 1190-8, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16262746

ABSTRACT

In our search for new bioactive products against mosquito vectors, we reported the slightly larvicidal and adulticidal potency, but remarkable repellency of Apium graveolens both in laboratory and field conditions. Repellency of the ethanolic preparation of hexane-extracted A. graveolens was, therefore, investigated and compared with those of 15 commercial mosquito repellents including the most widely used, DEET. Hexane-extracted A. graveolens showed a significant degree of repellency in a dose-dependent manner with vanillin added. Ethanolic A. graveolens formulations (10-25% with and without vanillin) provided 2-5 h protection against female Aedes aegypti. Repellency that derived from the most effective repellent, 25% of hexane-extracted A. graveolens with the addition of 5% vanillin, was comparable to the value obtained from 25% of DEET with 5% vanillin added. Moreover, commercial repellents, except formulations of DEET, showed lower repellency than that of A. graveolens extract. When applied on human skin under field conditions, the hexane-extracted A. graveolens plus 5% vanillin showed a strong repellent action against a wide range of mosquito species belonging to various genera. It had a protective effect against Aedes gardnerii, Aedes lineatopennis, Anopheles barbirostris, Armigeres subalbatus, Culex tritaeniorhynchus, Culex gelidus, Culex vishnui group and Mansonia uniformis. The hexane-extracted A. graveolens did not cause a burning sensation or dermal irritation when applied to human skin. No adverse effects were observed on the skin or other parts of the human volunteers' body during 6 months of the study period or in the following 3 months, after which time observations ceased. Therefore, A. graveolens can be a potential candidate for use in the development of commercial repellents that may be an alternative to conventional synthetic chemicals, particularly in community vector control applications.


Subject(s)
Apium/chemistry , Culicidae/drug effects , Insect Repellents/pharmacology , Adolescent , Adult , Aedes/drug effects , Animals , Anopheles/drug effects , Antioxidants/pharmacology , Benzaldehydes/pharmacology , Culex/drug effects , DEET/pharmacology , Female , Humans , Male , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...