Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 119: 105548, 2022 02.
Article in English | MEDLINE | ID: mdl-34959174

ABSTRACT

Epilepsy is a disease that affects millions of people around the globe and has a multifactorial cause. Inflammation is a process that can be involved in the development of seizures. Thus, the present study proposed the design and synthesis of new candidates for antiepileptic drugs that would also control the inflammatory process. Nine new derivatives of the substituted thiazophthalimide hybrid core were obtained with satisfactory purity ≥99% and yields between 27% and 87%. All compounds showed cell viability values greater than 90% in the culture of PBMC cells from healthy volunteers and, therefore, were not considered cytotoxic. These compounds modulated proinflammatory cytokines IFN-y and IL-17A and can mitigate inflammation. Acute toxicity studies of compound 7i in an animal model indicated that the compound has low toxicity and an LD50 greater than 2 g/kg in healthy adult rats. The same compound did not show positive results for anticonvulsant activity through the PTZ test. However, 7i demonstrates the interaction with the target GABA-A receptor in silico, indicating a possible activity as an agonist of that receptor. Thus, further studies are needed to investigate the anticonvulsant activity, in particular, using models in which the inflammatory process triggers epileptic seizures.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Phthalimides/therapeutic use , Seizures/drug therapy , Thiazoles/therapeutic use , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Epilepsy/pathology , Humans , Male , Molecular Docking Simulation , Molecular Structure , Phthalimides/chemical synthesis , Phthalimides/chemistry , Rats , Rats, Wistar , Seizures/pathology , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
2.
Pharmaceutics ; 13(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34575597

ABSTRACT

Lyso-7 is a novel synthetic thiazolidinedione, which is a receptor (pan) agonist of PPAR α,ß/δ,γ with anti-inflammatory activity. We investigated the cardiotoxicity of free Lyso-7 in vitro (4.5-450 nM), and Lyso-7 loaded in polylactic acid nanocapsules (NC) in vivo (Lyso-7-NC, 1.6 mg/kg). In previous work, we characterized Lyso-7-NC. We administered intravenously Lyso-7, Lyso-7-NC, control, and blank-NC once a day for seven days in mice. We assessed cell contraction and intracellular Ca2+ transients on single mice cardiomyocytes enzymatically isolated. Lyso-7 reduced cell contraction and accelerated relaxation while lowering diastolic Ca2+ and reducing Ca2+ transient amplitude. Lyso-7 also promoted abnormal ectopic diastolic Ca2+ events, which isoproterenol dramatically enhanced. Incorporation of Lyso-7 in NC attenuated drug effects on cell contraction and prevented its impact on relaxation, diastolic Ca2+, Ca2+ transient amplitude, Ca2+ transient decay kinetics, and promotion of diastolic Ca2+ events. Acute effects of Lyso-7 on cardiomyocytes in vitro at high concentrations (450 nM) were globally similar to those observed after repeated administration in vivo. In conclusion, we show evidence for off-target effects of Lyso-7, seen during acute exposure of cardiomyocytes to high concentrations and after repeated treatment in mice. Nano-encapsulation of Lyso-7 in polymeric NC attenuated the unwanted effects, particularly ectopic Ca2+ events known to support life-threatening arrhythmias favored by stress or exercise.

3.
Curr Org Synth ; 17(4): 252-270, 2020.
Article in English | MEDLINE | ID: mdl-32209046

ABSTRACT

Phthalimide derivatives have been presenting several promising biological activities in the literature, such as anti-inflammatory, analgesic, antitumor, antimicrobial and anticonvulsant. The most well-known and studied phthalimide derivative (isoindoline-1,3-dione) is thalidomide: this compound initially presented important sedative effects, but it is now known that thalidomide has effectiveness against a wide variety of diseases, including inflammation and cancer. This review approaches some of the recent and efficient chemical synthesis pathways to obtain phthalimide analogues and also presents a summary of the main biological activities of these derivatives found in the literature. Therefore, this review describes the chemical and therapeutic aspects of phthalimide derivatives.


Subject(s)
Phthalimides/chemical synthesis , Phthalimides/therapeutic use , Animals , Cell Line, Tumor , Humans , Phthalimides/pharmacology
4.
Comb Chem High Throughput Screen ; 23(5): 359-368, 2020.
Article in English | MEDLINE | ID: mdl-32189590

ABSTRACT

AIM AND OBJECTIVE: In the last decades, cancer has become a major problem in public health all around the globe. Chimeric chemical structures have been established as an important trend on medicinal chemistry in the last years. Thiazacridines are hybrid molecules composed of a thiazolidine and acridine nucleus, both pharmacophores that act on important biological targets for cancer. By the fact it is a serious disease, seven new 3-acridin-9-ylmethyl-thiazolidine-2,4-dione derivatives were synthesized, characterized, analyzed by computer simulation and tested in tumor cells. In order to find out if the compounds have therapeutic potential. MATERIALS AND METHODS: Seven new 3-acridin-9-ylmethyl-thiazolidine-2,4-dione derivatives were synthesized through Michael addition and Knoevenagel condensation strategies. Characterization was performed by NMR and Infrared spectroscopy techniques. Regarding biological activity, thiazacridines were tested against solid and hematopoietic tumoral cell lines, namely Jurkat (acute T-cell leukemia); HL-60 (acute promyelocytic leukemia); DU 145 (prostate cancer); MOLT-4 (acute lymphoblastic leukemia); RAJI (Burkitt's lymphoma); K562 (chronic myelogenous leukemia) and normal cells PBMC (healthy volunteers). Molecular docking analysis was also performed in order to assess major targets of these new compounds. Cell cycle and clonogenic assay were also performed. RESULTS: Compound LPSF/AA-62 (9f) exhibited the most potent anticancer activity against HL-60 (IC50 3,7±1,7 µM), MOLT-4 (IC50 5,7±1,1 µM), Jurkat (IC50 18,6 µM), Du-145 (IC50 20±5 µM) and Raji (IC50 52,3±9,2 µM). While the compound LPSF/AA-57 (9b) exhibited anticancer activity against the K562 cell line (IC50 51,8±7,8 µM). Derivative LPSF/AA-62 (9f) did not interfere in the cell cycle phases of the Molt-4 lineage. However, the LPSF/AA-62 (9f) derivative significantly reduced the formation of prostate cancer cell clones. The compound LPSF/AA-62 (9f) has shown strong anchorage stability with enzymes topoisomerases 1 and 2, in particular due the presence of chlorine favored hydrogen bonds with topoisomerase 1. CONCLUSION: The 3-(acridin-9-ylmethyl)-5-((10-chloroanthracen-9-yl)methylene)thiazolidine-2,4-dione (LPSF/AA-62) presented the most promising results, showing anti-tumor activity in 5 of the 6 cell types tested, especially inhibiting the formation of colonies of prostate tumor cells (DU-145).


Subject(s)
Acridines/pharmacology , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Acridines/chemical synthesis , Acridines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure
5.
Lasers Med Sci ; 35(1): 79-85, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31081523

ABSTRACT

Chagas disease is endemic in Latin America and increasingly found in non-endemic countries. Its treatment is limited due to the variable efficacy and several side effects of benznidazole. Photodynamic antimicrobial chemotherapy (PACT) may be an attractive approach for treating Chagas disease. Here, the trypanocidal activity of PACT was investigated in vitro using phenothiazine derivatives. The cytotoxicity of both, methylene blue (MB) and toluidine blue (TBO), was determined on macrophages cultures using AlamarBlue method. The trypanocidal activity of the two photosensitizers was initially evaluated by determining their IC50 values against trypomastigote forms. After this, the trypanocidal effect was evaluated in cultures of infected macrophages using an automatized image analysis protocol. All experiments were performed in the dark and in the clear phase (after a photodynamic exposure). The compounds showed no cytotoxicity in both phases at the tested concentrations. The IC50 values for the sole use of MB and TBO were 2.6 and 1.2 µM, respectively. The photoactivation of the compounds using a fixed energy density (J/cm2) caused a reduction of the IC50 values to 1.0 and 0.9 µM, respectively. It was found that, on infected macrophage, the use of TBO significantly reduced the number of infected cells and parasitic load, and this effect was increased in the presence of light. The results of the present study are indicative that PACT may be considered as both selective and effective therapeutic intervention for treating Chagas disease.


Subject(s)
Antiparasitic Agents/pharmacology , Phenothiazines/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Anti-Infective Agents/pharmacology , Antiparasitic Agents/therapeutic use , Cell Death/drug effects , Cell Death/radiation effects , Chagas Disease/drug therapy , Humans , Light , Methylene Blue/chemistry , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Mice, Inbred BALB C , Parasite Load , Phenothiazines/therapeutic use , Photosensitizing Agents/therapeutic use , Tolonium Chloride/chemistry , Tolonium Chloride/pharmacology , Tolonium Chloride/therapeutic use , Trypanosoma cruzi/radiation effects
6.
Adv Wound Care (New Rochelle) ; 8(9): 417-428, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31440419

ABSTRACT

Objective: Chronic wounds associated with diabetes are an important public health problem demanding new treatments to improve wound healing and decrease amputations. Monocytes/macrophages play a key role in sustained inflammation associated with impaired healing and local administration of peroxisome proliferator-activated receptor (PPAR)γ agonists may modulate macrophage, improving healing. In this study, we investigated the effects of GQ-11, a partial/dual PPARα/γ agonist, on macrophage function and wound healing in diabetes. Approach: Wounds were surgically induced at the dorsum of C57BL/6J and BKS.Cg-Dock7m +/+ Leprdb/J (db/db) mice and treated with hydrogel (vehicle), pioglitazone or GQ-11, for 7 or 10 days, respectively. After treatment, wounds were analyzed histologically and by quantitative PCR (qPCR). In addition, bone marrow-derived macrophages (BMDM) were cultured from C57BL/6J mice and treated with vehicle, pioglitazone, or GQ-11, after challenge with lipopolysaccharide or interleukin-4 to be analyzed by qPCR and flow cytometry. Results: GQ-11 treatment upregulated anti-inflammatory/pro-healing factors and downregulated pro-inflammatory factors both in wounds of db/db mice and in BMDM. Innovation: Wounds of db/db mice treated with GQ-11 exhibited faster wound closure and re-epithelization, increased collagen deposition, and less Mac-3 staining compared with vehicle, providing a new approach to treatment of diabetic wound healing to prevent complications. Conclusion: GQ-11 improves wound healing in db/db mice, regulating the expression of pro- and anti-inflammatory cytokines and wound growth factors, leading to increased re-epithelization and collagen deposition.

7.
Biomed Res Int ; 2018: 3419565, 2018.
Article in English | MEDLINE | ID: mdl-30009168

ABSTRACT

Heren, we analyzed Treg cells as potential biomarkers of disease activity in systemic lupus erythematosus (SLE) patients. Peripheral blood mononuclear cells from 30 SLE patients (15 active: SLEDAI > 6/15 SLE remission: SLEDAI< 6) and 15 healthy volunteers were purified. Treg immunophenotyping was performed using CD4, CD25, CD45, CD127, and FOXP3 markers. CD4+FOXP3+ Treg activation state was investigated based on CD45RA and FOXP3 expression. To increase the accuracy of our findings, a multivariate linear regression was performed. We showed a significant increase in the frequency of CD4+FOXP3+ Treg cells in SLE patients. However, unlike all other Treg cells phenotypes analyzed, only eTreg (CD4+FOXP3highCD45RA-) (p=0.01) subtype was inversely correlated with disease activity while Foxp3+nontreg (CD4+FOXP3lowCD45RA-) (p=0.003) exerted a direct influence in the outcome of the disease. Foxp3+nontreg cells were the most consistent SLE active indicator, confirmed by multiple linear regression analyses. In summary, our results demonstrate Foxp3+nontreg cells as new biomarkers in the search of an effective therapeutic strategy in SLE.


Subject(s)
Biomarkers , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Regulatory , Adult , Brazil , CD4 Antigens , Female , Flow Cytometry , Forkhead Transcription Factors , Humans , Interleukin-2 Receptor alpha Subunit , Leukocyte Common Antigens , Leukocytes, Mononuclear , Male , Middle Aged , Young Adult
8.
Int J Obes (Lond) ; 42(5): 1062-1072, 2018 06.
Article in English | MEDLINE | ID: mdl-29453462

ABSTRACT

BACKGROUND: Obesity and insulin resistance/diabetes are important risk factors for cardiovascular diseases and demand safe and efficacious therapeutics. OBJECTIVE: To assess the effects of a new thiazolidine compound-GQ-11-on obesity and insulin resistance induced by a diabetogenic diet in LDL receptor-deficient (LDLr-/-) mice. METHODS: Molecular docking simulations of GQ-11, PPARα and PPARγ structures were performed. Male C57BL/6J LDLr-/- mice fed a diabetogenic diet for 24 weeks were treated with vehicle, GQ-11 or pioglitazone or (20 mg/kg/day) for 28 days by oral gavage. Glucose tolerance test, insulin, HOMA-IR, adipokines (leptin, adiponectin) and the lipid profile were assessed after treatment. Adipose tissue was analysed by X-ray analysis and morphometry; gene and protein expression were evaluated by real-time PCR and western blot, respectively. RESULTS: GQ-11 showed partial agonism to PPARγ and PPARα. In vivo, treatment with GQ-11 ameliorated insulin sensitivity and did not modify subcutaneous adipose tissue and body weight gain. In addition, GQ-11 restored adipokine imbalance induced by a diabetogenic diet and enhanced Glut-4 expression in the adipose tissue. Improved insulin sensitivity was also associated with lower levels of MCP-1 and higher levels of IL-10. Furthermore, GQ-11 reduced triglycerides and VLDL cholesterol and increased HDL-cholesterol by upregulation of Apoa1 and Abca1 gene expression in the liver. CONCLUSION: GQ-11 is a partial/dual PPARα/γ agonist that demonstrates anti-diabetic effects. Additionally, it improves the lipid profile and ameliorates chronic inflammation associated with obesity in atherosclerosis-prone mice.


Subject(s)
Indoles/pharmacology , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Receptors, LDL/metabolism , Thiazolidines/pharmacology , Adipokines/blood , Animals , Body Weight/drug effects , Indoles/chemistry , Inflammation/metabolism , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Receptors, LDL/genetics , Thiazolidines/chemistry
9.
Eur J Pharm Sci ; 115: 270-285, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29331607

ABSTRACT

Drug candidate LPSF/FZ4 with promising schistosomicidal properties in vitro was previously synthesized. However, LPSF/FZ4 has limited aqueous solubility (<1 µg/mL), leading to ineffective dissolution and, therefore, no meaningful in vivo comparative studies could be pursued. This study was aimed to develop a proper amorphous solid dispersion (SD) to enhance the solubility and dissolution rate of LPSF/FZ4 such that its biological activity could be investigated. To better understand its physiological behavior, the pKa of LPSF/FZ4, a monoprotic weak acid with NH group at the imidazolidine ring, was first determined to be 8.13 using an automated SiriusT3. The development of SD systems for LPSF/FZ4 involved the evaluation of various water-soluble polymer carriers such as PVP K-29/32, PVP K-90, HPMC K4M, PVPVA 64 and SOLUPLUS®. The most promising SD systems were selected through in vitro dissolution studies under nonsink conditions, together with physicochemical characterization as well as accelerated stability study. It was shown that SD of 10% LPSF/FZ4 in SOLUPLUS® and PVP K-90 could significantly increase the area-under-the-curve value of the nonsink dissolution profile (AUC values of the SD in SOLUPLUS® and PVP K-90 were 1381.03 and 1342.34 µL/mL·min, respectively, and that of the pure crystalline drug was 0.02 µL/mL·min), a useful surrogate for the in vivo bioavailability. Cmax values for the SD in SOLUPLUS® (12.50 µL/mL) and PVP K-90 (25.86 µL/mL) were also higher than the one of the crystalline drug (0.02 µL/mL). The SD system of LPSF/FZ4 in SOLUPLUS® showed a significant increase in schistosomicidal activity in an animal model as compared with the conventional treatment using crystalline drug, consistent with the AUC trend from the nonsink dissolution. Thus this SD system of LPSF/FZ4 could be useful as a potential formulation for treating schistosomiasis.


Subject(s)
Benzylidene Compounds/chemistry , Benzylidene Compounds/pharmacology , Hydantoins/chemistry , Hydantoins/pharmacology , Polymers/chemistry , Schistosomiasis/drug therapy , Animals , Biological Availability , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Compounding/methods , Female , Hydantoins/pharmacokinetics , Mice , Solubility/drug effects
10.
Autoimmunity ; 51(1): 1-9, 2018 02.
Article in English | MEDLINE | ID: mdl-29256263

ABSTRACT

Systemic sclerosis (SSc) is a multisystemic, complex, and rare disease of connective tissue, with high morbidity and mortality, and without specific treatment. The disease is characterized by three main principles: vascular disease, autoantibody production and inflammation, and fibrosis. Since it is well defined that SSc is characterized by elevated production of TGF-ß, IL-6, and IL-1, all of them cytokines related to Th17 differentiation, the hypothesis is that this disease may be strongly related to a polarization of the immune response towards the Th17 pathway. Considering the importance of a better understanding of the pathophysiology of Th17 pathway in SSc, this article aims to propose an update for a better understanding of current knowledge on main cytokines secreted by the Th17 cells (IL-17 A, IL-21, and IL-22) and the future prospects in the current disease.


Subject(s)
Interleukin-17/immunology , Scleroderma, Systemic/immunology , Th17 Cells/immunology , Humans , Scleroderma, Systemic/pathology , Th17 Cells/pathology
11.
PLoS One ; 11(5): e0154310, 2016.
Article in English | MEDLINE | ID: mdl-27138164

ABSTRACT

BACKGROUND: Beige adipocytes comprise a unique thermogenic cell type in the white adipose tissue (WAT) of rodents and humans, and play a critical role in energy homeostasis. In this scenario, recruitment of beige cells has been an important focus of interest for the development of novel therapeutic strategies to treat obesity. PPARγ activation by full agonists (thiazolidinediones, TZDs) drives the appearance of beige cells, a process so-called browning of WAT. However, this does not translate into increased energy expenditure, and TZDs are associated with weight gain. Partial PPARγ agonists, on the other hand, do not induce weight gain, but have not been shown to drive WAT browning. The present study was designed to investigate the effects of GQ-16 on BAT and on browning of WAT in obese mice. METHODS: Male Swiss mice with obesity and hyperglycemia induced by high fat diet were treated with vehicle, rosiglitazone (4 mg/kg/d) or the TZD-derived partial PPARγ agonist GQ-16 (40 mg/kg/d) for 14 days. Fasting blood glucose, aspartate aminotransferase, alanine aminotransferase and lipid profile were measured. WAT and brown adipose tissue (BAT) depots were excised for determination of adiposity, relative expression of Ucp-1, Cidea, Prdm16, Cd40 and Tmem26 by RT-qPCR, histological analysis, and UCP-1 protein expression analysis by immunohistochemistry. Liver samples were also removed for histological analysis and determination of hepatic triglyceride content. RESULTS: GQ-16 treatment reduced high fat diet-induced weight gain in mice despite increasing energy intake. This was accompanied by reduced epididymal fat mass, reduced liver triglyceride content, morphological signs of increased BAT activity, increased expression of thermogenesis-related genes in interscapular BAT and epididymal WAT, and increased UCP-1 protein expression in interscapular BAT and in epididymal and inguinal WAT. CONCLUSION: This study suggests for the first time that a partial PPARγ agonist may increase BAT activity and induce the expression of thermogenesis-related genes in visceral WAT. GENERAL SIGNIFICANCE: These findings suggest that PPARγ activity might be modulated by partial agonists to induce WAT browning and treat obesity.


Subject(s)
Adipose Tissue, Brown/drug effects , Gene Expression Regulation/drug effects , Hyperglycemia/complications , Intra-Abdominal Fat/drug effects , Obesity/physiopathology , Thermogenesis/genetics , Thiazolidinediones/pharmacology , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Adiposity/drug effects , Adiposity/genetics , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Liver/drug effects , Liver/metabolism , Male , Mice , Obesity/complications , Obesity/genetics , Obesity/pathology , PPAR gamma/agonists , Thermogenesis/drug effects , Thiazolidinediones/chemistry , Triglycerides/metabolism , Uncoupling Protein 1/genetics
12.
Eur J Pharmacol ; 782: 98-106, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27108791

ABSTRACT

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-ß expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation.


Subject(s)
Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Thiazolidinediones/pharmacology , Cell Adhesion Molecules/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Down-Regulation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Nitric Oxide/metabolism , PPAR gamma/agonists , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/pharmacology
13.
Pharmacol Res ; 104: 49-60, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26706782

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARγ) regulates multiple pathways involved in the pathogenesis of obesity and atherosclerosis. Here, we evaluated the therapeutic potential of GQ-177, a new thiazolidinedione, on diet-induced obesity and atherosclerosis. The intermolecular interaction between PPARγ and GQ-177 was examined by virtual docking and PPAR activation was determined by reporter gene assay identifying GQ-177 as a partial and selective PPARγ agonist. For the evaluation of biological activity of GQ-177, low-density lipoprotein receptor-deficient (LDLr(-/-)) C57/BL6 mice were fed either a high fat diabetogenic diet (diet-induced obesity), or a high fat atherogenic diet, and treated with vehicle, GQ-177 (20mg/kg/day), pioglitazone (20mg/kg/day, diet-induced obesity model) or rosiglitazone (15mg/kg/day, atherosclerosis model) for 28 days. In diet-induced obesity mice, GQ-177 improved insulin sensitivity and lipid profile, increased plasma adiponectin and GLUT4 mRNA in adipose tissue, without affecting body weight, food consumption, fat accumulation and bone density. Moreover, GQ-177 enhanced hepatic mRNA levels of proteins involved in lipid metabolism. In the atherosclerosis mice, GQ-177 inhibited atherosclerotic lesion progression, increased plasma HDL and mRNA levels of PPARγ and ATP-binding cassette A1 in atherosclerotic lesions. GQ-177 acts as a partial PPARγ agonist that improves obesity-associated insulin resistance and dyslipidemia with atheroprotective effects in LDLr(-/-) mice.


Subject(s)
Atherosclerosis/metabolism , Obesity/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Receptors, LDL/genetics , Sulfones/pharmacology , Thiazolidinediones/pharmacology , Adiponectin/genetics , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Aorta, Thoracic/pathology , Atherosclerosis/blood , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Bone Density , Cell Line , Cholesterol, HDL/blood , Fibroblast Growth Factors/genetics , Glucose Transporter Type 4/genetics , Humans , Leptin/genetics , Liver/drug effects , Liver/metabolism , Male , Mice, Knockout , Models, Molecular , Myocardium/metabolism , Obesity/blood , Obesity/drug therapy , Obesity/pathology , Sulfones/therapeutic use , Thiazolidinediones/therapeutic use
14.
Vascul Pharmacol ; 71: 174-80, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25869519

ABSTRACT

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that improve insulin-mediated glucose uptake and possess beneficial vasculoprotective actions. However, because undesirable side effects are associated with these drugs, novel TZDs are under development. In this study, we evaluated the biological activity of LYSO-7, a new indole-thiazolidine, on PPAR activation, inflammation and atherogenesis using a gene reporter assay, lipopolysaccharide (LPS)-activated RAW 264.7 cell culture, and a low-density lipoprotein receptor knockout (LDLr(-/-)) mouse model of atherosclerosis. LYSO-7 shows low cytotoxicity in RAW 264.7 cells and at 2.5µmol/L induces PPARα and PPARγ transactivation as well as inhibits LPS-induced nitrite production and the mRNA gene expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1). In addition, treatment with LYSO-7 reduces the development of atherosclerosis in LDLr(-/-) mice, improves the lipid profile, blood glucose levels, and downregulates CD40 and CD40L expression without affecting the body weight of the animals. Altogether, our data show that LYSO-7 possesses anti-inflammatory properties and that treatment with this TZD attenuates atherosclerosis progression in LDLr(-/-) mice by modulating lipid metabolism and inflammation. Thus, LYSO-7 shows potential as a new drug candidate for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Indoles/therapeutic use , Receptors, LDL/deficiency , Thiazolidinediones/therapeutic use , Thiazolidines/therapeutic use , Animals , Cell Line , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Peroxisome Proliferator-Activated Receptors/agonists , Thiazolidinediones/pharmacology , Thiazolidines/pharmacology
15.
Eur J Pharmacol ; 718(1-3): 197-205, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24036257

ABSTRACT

A number of studies have demonstrated the biological activities of peroxisome proliferator-activated receptors. However, few studies have addressed the effects of the agonists of these receptors on lung diseases. The aim of the present study was to evaluate the anti-inflammatory action of a novel synthetic thiazolidine derivative (5Z)-3-benzyl-5-(1H-indol-3-ylmethylene)-thiazolidine-2,4-dione (LPSF/RA-4) on acute lung inflammation (pleurisy) induced by carrageenan. Forty mice were randomly allocated to the following groups: (I) saline control group (sham); (II) carrageenan (CAR) group; (III) CAR+LPSF/RA-4 group treated with LPSF/RA-4 (60 µmol/kg); and (IV) INDO group treated with indometacin (5mg/kg). Total cell counts and the measure of nitric oxide (NO) were performed in pleural exudates. Lung fragments were processed for light microscopy, transmission electron microscopy, immunohistochemistry and Western blotting. The influx of leucocytes and NO levels were significantly reduced following treatment with LPSF/RA-4 and INDO. Histopathological and ultrastructural analyses of the CAR group revealed evident tissue alterations, such as oedema, infiltrates of inflammatory cells and emphysema. These alterations were significantly reduced in the groups treated with LPSF/RA-4 or INDO. Immunohistochemistry revealed an increase in inflammatory markers (COX-2, iNOS, TNF-α and IL-1ß) in the lung tissue of the CAR group, whereas the groups treated with LPSF/RA-4 and INDO exhibited significant reductions in such immunomarkers. Western blot analysis revealed an increased expression of COX-2 and IL-1 in the CAR group, which was reduced by treatment with LPSF/RA-4. The present findings demonstrate the potent anti-inflammatory action of the novel derivative thiazolidinedione LPSF/RA-4 in acute lung injury induced by carrageenan.


Subject(s)
Carrageenan/adverse effects , Indoles/pharmacology , Pneumonia/chemically induced , Pneumonia/drug therapy , Thiazolidinediones/pharmacology , Acute Disease , Animals , Gene Expression Regulation, Enzymologic/drug effects , Indoles/therapeutic use , Inflammation Mediators/metabolism , Leukocyte Count , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Lung/drug effects , Lung/pathology , Male , Mice , Nitric Oxide/metabolism , Pleurisy/chemically induced , Pleurisy/drug therapy , Pneumonia/blood , Pneumonia/genetics , Thiazolidinediones/therapeutic use
16.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 2): o224, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23424505

ABSTRACT

In the title compound, C(19)H(15)NO(4), the acridine system is essentially planar (r.m.s. deviation = 0.015 Å). The crystal packing exhibits π-π inter-actions between pairs of centrosymmetric mol-ecules, one of them between the central heterocyclic rings and others between the outer benzene rings of the acridine systems, with centroid-centroid distances of 3.692 (1) and 3.754 (1) Å, respectively. These pairs are further linked by additional π-π inter-actions along the a-axis direction through one of the two outer benzene ring of neighboring mol-ecules, with a centroid-centroid distance of 3.642 (2) Å.

17.
Lasers Surg Med ; 44(10): 850-5, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23184450

ABSTRACT

BACKGROUND AND OBJECTIVE: Cutaneous and mucocutaneous leishmaniasis are diseases characterized by skin or mucosal manifestations. In the new world, Leishmania braziliensis is the main etiological agent of cutaneous leishmaniasis, condition that may evolve to the mucocutaneous form. The therapeutic arsenal routinely employed to treat infected patients is unsatisfactory, especially for pentavalent antimonials, treatment recommended by the WHO, as they are often highly toxic, poorly tolerated and of variable effectiveness. This work aimed to evaluate in vitro the effectiveness of photodynamic antimicrobial chemotherapy as a new approach for the treatment of leishmaniasis. MATERIALS AND METHODS: A laser (λ = 660 nm, 40 mW, 4.2 J/cm2 , and 8.4 J/cm2 , CW) associated to phenothiazine's derivatives (5 and 10 µg/ml, toluidine blue O, methylene blue, or phenothiazine) on the promastigote forms of L. braziliensis in a single session. Samples were removed and analyzed in a hemocytometer 72 hours after PACT and viability of the parasites was assessed in quadruplicates. RESULTS: An important decrease in the number of viable parasites on all treated groups in comparison to their controls was observed as all tested compounds lead to significant parasite lethality being the highest lethality achieved with 10 µg/ml of TBO. No lethality was observed on groups treated with laser or with any of the compounds separately. CONCLUSIONS: TBO presented higher parasite lethality in comparison to MB with impressive reduction from 1 hour to 5 minutes of pre-incubation time.


Subject(s)
Leishmania braziliensis/drug effects , Leishmaniasis, Cutaneous/drug therapy , Methylene Blue/therapeutic use , Photochemotherapy , Photosensitizing Agents/therapeutic use , Tolonium Chloride/therapeutic use , Trypanocidal Agents/therapeutic use , Humans , Methylene Blue/pharmacology , Phenothiazines/pharmacology , Phenothiazines/therapeutic use , Photosensitizing Agents/pharmacology , Tolonium Chloride/pharmacology , Trypanocidal Agents/pharmacology
18.
AAPS PharmSciTech ; 13(4): 1355-66, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23054982

ABSTRACT

LPSF/AC04 (5Z)-[5-acridin-9-ylmethylene-3-(4-methyl-benzyl)-thiazolidine-2,4-dione] is an acridine-based derivative, part of a series of new anticancer agents synthesized for the purpose of developing more effective and less toxic anticancer drugs. However, the use of LPSF/AC04 is limited due to its low solubility in aqueous solutions. To overcome this problem, we investigated the interaction of LPSF/AC04 with hydroxypropyl-ß-cyclodextrin (HP-ß-CyD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CyD) in inclusion complexes and determine which of the complexes formed presents the most significant interactions. In this paper, we report the physical characterization of the LPSF/AC04-HP-CyD inclusion complexes by thermogravimetric analysis, differential scanning calorimetry, infrared spectroscopy absorption, Raman spectroscopy, (1)HNMR, scanning electron microscopy, and by molecular modeling approaches. In addition, we verified that HP-ß-CyD complexation enhances the aqueous solubility of LPSF/AC04, and a significant increase in the antiproliferative activity of LPSF/AC04 against cell lines can be achieved by the encapsulation into liposomes. These findings showed that the nanoencapsulation of LPSF/AC04 and LPSF/AC04-HP-CyD inclusion complexes in liposomes leads to improved drug penetration into the cells and, as a result, an enhancement of cytotoxic activity. Further in vivo studies comparing free and encapsulated LPSF/AC04 will be undertaken to support this investigation.


Subject(s)
Acridines/chemistry , Acridines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Liposomes/chemistry , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology , beta-Cyclodextrins/chemistry , gamma-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Absorption , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Stability , Excipients/chemistry , Humans , Solubility , Water/chemistry
19.
Acta Pharm ; 62(2): 221-36, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22750820

ABSTRACT

A series of 2-[(arylidene)amino]-cycloalkyl[b]thiophene-3-carbonitriles (2a-x) was synthesized by incorporation of substituted aromatic aldehydes in Gewald adducts (1a-c). The title compounds were screened for their antifungal activity against Candida krusei and Criptococcus neoformans and for their antiproliferative activity against a panel of 3 human cancer cell lines (HT29, NCI H-292 and HEP). For antiproliferative activity, the partial least squares (PLS) methodology was applied. Some of the prepared compounds exhibited promising antifungal and proliferative properties. The most active compounds for antifungal activity were cyclohexyl[b]thiophene derivatives, and for antiproliferative activity cycloheptyl[b]thiophene derivatives, especially 2-[(1H-indol-2-yl-methylidene)amino]- 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile (2r), which inhibited more than 97 % growth of the three cell lines. The PLS discriminant analysis (PLS-DA) applied generated good exploratory and predictive results and showed that the descriptors having shape characteristics were strongly correlated with the biological data.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Design , Fungi/drug effects , Indoles/pharmacology , Neoplasms/drug therapy , Thiophenes/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Candida/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cryptococcus neoformans/drug effects , Discriminant Analysis , Humans , Indoles/chemical synthesis , Indoles/chemistry , Least-Squares Analysis , Microbial Sensitivity Tests , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Nitriles/pharmacology , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Transition Temperature
20.
J Biol Chem ; 287(33): 28169-79, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22584573

ABSTRACT

The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the ß-sheet region of the receptor, presumably explaining the compound's efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compound's weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby "ideal" PPARγ-based therapeutics stabilize the ß-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects.


Subject(s)
Hypoglycemic Agents/pharmacology , PPAR gamma/agonists , Thiazolidinediones/pharmacology , Weight Gain , 3T3-L1 Cells , Animals , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Drug Evaluation, Preclinical , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Ligands , Mice , NIH 3T3 Cells , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Structure, Secondary , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacokinetics , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...