Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 155: 106568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714003

ABSTRACT

PURPOSE: The strength of temporary restorations plays a vital role in full-mouth reconstruction, and it can be impacted by the aging process. The aim of this in vitro study was to evaluate the biaxial flexural strength and fractographic features of different resin-based materials submitted to thermal aging. MATERIAL AND METHODS: One hundred and ninety-two resin disc-shaped specimens (6.5 mm in diameter and 0.5 mm in thickness) were fabricated and divided into six experimental groups according to the resin-based materials (Filtek Bulk-Fill flowable resin; J-Temp temporary resin; and Fuji Lining glass ionomer cement) and aging process (before and after thermal cycling). Biaxial flexural strength test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min before and after thermal cycling (5 °C and 55 °C, 5760 cycles, 30 s). The mechanical properties were assessed using Weibull parameters (characteristic strength and Weibull modulus) (n = 30). Fractured specimens were examined under a polarized light stereomicroscope to identify crack origin and propagation direction. The surface microstructure of the resin-based materials was assessed by scanning electron microscopy (n = 2). The Weibull modulus (m), characteristic strength, and reliability properties were calculated, and a contour plot was used to detect differences among groups (95% confidence interval). RESULTS: The Weibull modulus (m), characteristic strength, and reliability of the resin-based compounds were influenced by material type and thermal aging (p < 0.05). Weibull modulus (m) revealed no differences when comparing the materials and aging process (p > 0.05), except for the preceding aging period where Filtek Bulk-Fill exhibited higher values compared to J-Temp (p < 0.05). Filtek Bulk-Fill demonstrated superior characteristic strength and reliability compared to J-Temp and Fuji Lining before and after thermal cycling (p < 0.05). Fractography of the resin-based materials showed fractures originating from surface defects exposed to tensile side and their propagation toward the compressive side. Generally, no differences in surface microstructure were observed on micrographs before and after thermal aging for Filtek Bulk-Fill and Fuji Lining. However, the aging process developed flaws in J-Temp. CONCLUSION: Resin-based material composition resulted in different flexural strength performance, impacting the Weibull modulus (m), characteristic strength, and reliability of the resin-based restorations.


Subject(s)
Composite Resins , Flexural Strength , Materials Testing , Composite Resins/chemistry , Resins, Synthetic/chemistry , Temperature , Time Factors , Water/chemistry , Stress, Mechanical
2.
J Mech Behav Biomed Mater ; 143: 105872, 2023 07.
Article in English | MEDLINE | ID: mdl-37201226

ABSTRACT

The use of identical prosthetic components for all implant diameters could reduce the production costs by companies and the complexity of component selection for the clinician and his team. However, it would imply in reduction of thickness of the cervical walls of tapered internal connection implants, which could compromise the reliability of narrow and extra-narrow implants. Therefore, this study aims to evaluate the probability of survival and failure modes of extra-narrow implant systems with the same internal diameter as standard-diameter implants using the same prosthetic components. It was used eigth different implant system configurations, including narrow (Ø 3.3 mm) (N) extra-narrow (Ø 2.9 mm) (EN) and extra-narrow-scalloped (Ø 2.9 mm) (ENS) implants, both with cementable abutments (Ce) or titanium bases (Tib) and one-piece implants (Ø 2.5 mm and Ø 3.0 mm) (OP) (Medens, Itu, SP, Brazil), comprising the following groups: OP 3.0; OP 2.5; N Ce; N Tib; EN Ce, EN Tib, ENS-Ce and ENS-Tib. The implants were embedded using polymethylmethacrylate acrylic resin in a 15 mm matrix. Standardized maxillary central incisor crowns were virtually designed and milled to fit on the different studied abutments and cemented using a dual self-adhesive resin cement. The specimens were submitted to SSALT (Step Stress Accelerated Life Testing) at 15 Hz in water until failure or suspension of the test, until a maximum load of 500 N. Fractographic analysis of the failed specimens were realized in scanning electron microscopy. All implant systems demonstrated high probability of survival (90-100%) for missions at 50 and 100 N and values of characteristic strength superior to 139 N. Failure modes were restricted to the abutment in all the implant configurations tested. Therefore, the use extra-narrow implants with standardized prosthetic components for different implant diameters is a viable option for the replacement of anterior teeth.


Subject(s)
Crowns , Incisor , Reproducibility of Results , Materials Testing , Titanium , Dental Stress Analysis , Dental Restoration Failure , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...