Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
J Biomech ; 170: 112160, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38824704

ABSTRACT

A single depth camera provides a fast and easy approach to performing biomechanical assessments in a clinical setting; however, there are currently no established methods to reliably determine joint angles from these devices. The primary aim of this study was to compare joint angles as well as the between-day reliability of direct kinematics to model-constrained inverse kinematics recorded using a single markerless depth camera during a range of clinical and athletic movement assessments.A secondary aim was to determine the minimum number of trials required to maximize reliability. Eighteen healthy participants attended two testing sessions one week apart. Tasks included treadmill walking, treadmill running, single-leg squats, single-leg countermovement jumps, bilateral countermovement jumps, and drop vertical jumps. Keypoint data were processed using direct kinematics as well as in OpenSim using a full-body musculoskeletal model and inverse kinematics. Kinematic methods were compared using statistical parametric mapping and between-day reliability was calculated using intraclass correlation coefficients, mean absolute error, and minimal detectable change. Keypoint-derived inverse kinematics resulted in significantly smaller hip flexion (range = -9 to -2°), hip abduction (range = -3 to -2°), knee flexion (range = -5° to -2°), and greater dorsiflexion angles (range = 6-15°) than direct kinematics. Both markerless kinematic methods had high between-day reliability (inverse kinematics ICC 95 %CI = 0.83-0.90; direct kinematics ICC 95 %CI = 0.80-0.93). For certain tasks and joints, keypoint-derived inverse kinematics resulted in greater reliability (up to 0.47 ICC) and smaller minimal detectable changes (up to 13°) than direct kinematics. Performing 2-4 trials was sufficient to maximize reliability for most tasks. A single markerless depth camera can reliably measure lower limb joint angles, and skeletal model-constrained inverse kinematics improves lower limb joint angle reliability for certain tasks and joints.

2.
J Biomech ; 170: 112169, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795542

ABSTRACT

Single and dual integrated screw femoral nails are both commonly used to treat intertrochanteric fractures. This study investigated if using single or dual integrated screw femoral nails result in different post-operative hip joint loading. In the presence of differences, we investigated potential contributing factors. Patients were randomised for treatment via single screw (Stryker, Gamma3) or dual-integrated screw nail (Smith and Nephew, Intertan). Pre-injury mobility levels were collected at enrolment. Hip radiographs and gait data were collected at six weeks (Gamma: 16; Intertan: 15) and six months (Gamma: 14; Intertan: 13) follow-up. The resultant hip joint reaction forces and abductor muscle forces were estimated using electromyography-assisted neuromusculoskeletal modelling during level walking gait. Our primary analysis focused on the resultant hip joint reaction force and abductor muscle forces. We compared between groups, across stance phase of walking gait, using statistical parametric mapping. At six weeks, the Intertan group showed a short (∼5% of stance phase) but substantial (33 % [0.3 × body weight] greater magnitude) resultant hip joint reaction force when compared to the Gamma group (P = 0.022). Higher gluteus medius forces (P = 0.009) were demonstrated in the Intertan group at six weeks. Harris Hip Scores followed the trend seen for the biomechanical outcomes with superior scores for the Intertan group at six weeks postoperative (P = 0.044). The use of dual-integrated screw femoral nails over single screw devices may allow for hip biomechanics more closely resembling normal hip function at earlier post-operative timepoints, but these appear to resolve by six months postoperative.

3.
Article in English | MEDLINE | ID: mdl-38787676

ABSTRACT

Remodeling of the Achilles tendon (AT) is partly driven by its mechanical environment. AT force can be estimated with neuromusculoskeletal (NMSK) modeling; however, the complex experimental setup required to perform the analyses confines use to the laboratory. We developed task-specific long short-term memory (LSTM) neural networks that employ markerless video data to predict the AT force during walking, running, countermovement jump, single-leg landing, and single-leg heel rise. The task-specific LSTM models were trained on pose estimation keypoints and corresponding AT force data from 16 subjects, calculated via an established NMSK modeling pipeline, and cross-validated using a leave-one-subject-out approach. As proof-of-concept, new motion data of one participant was collected with two smartphones and used to predict AT forces. The task-specific LSTM models predicted the time-series AT force using synthesized pose estimation data with root mean square error (RMSE) ≤ 526 N, normalized RMSE (nRMSE) ≤ 0.21 , R 2 ≥ 0.81 . Walking task resulted the most accurate with RMSE = 189±62 N; nRMSE = 0.11±0.03 , R 2 = 0.92±0.04 . AT force predicted with smartphones video data was physiologically plausible, agreeing in timing and magnitude with established force profiles. This study demonstrated the feasibility of using low-cost solutions to deploy complex biomechanical analyses outside the laboratory.


Subject(s)
Achilles Tendon , Neural Networks, Computer , Running , Video Recording , Walking , Achilles Tendon/physiology , Humans , Walking/physiology , Biomechanical Phenomena , Male , Running/physiology , Adult , Female , Young Adult , Algorithms , Smartphone , Proof of Concept Study , Healthy Volunteers
4.
J Biomech ; 168: 112094, 2024 May.
Article in English | MEDLINE | ID: mdl-38640830

ABSTRACT

Semi-recumbent cycling performed from a wheelchair is a popular rehabilitation exercise following spinal cord injury (SCI) and is often paired with functional electrical stimulation. However, biomechanical assessment of this cycling modality is lacking, even in unimpaired populations, hindering the development of personalised and safe rehabilitation programs for those with SCI. This study developed a computational pipeline to determine lower limb kinematics, kinetics, and joint contact forces (JCF) in 11 unimpaired participants during voluntary semi-recumbent cycling using a rehabilitation ergometer. Two cadences (40 and 60 revolutions per minute) and three crank powers (15 W, 30 W, and 45 W) were assessed. A rigid body model of a rehabilitation ergometer was combined with a calibrated electromyogram-informed neuromusculoskeletal model to determine JCF at the hip, knee, and ankle. Joint excursions remained consistent across all cadence and powers, but joint moments and JCF differed between 40 and 60 revolutions per minute, with peak JCF force significantly greater at 40 compared to 60 revolutions per minute for all crank powers. Poor correlations were found between mean crank power and peak JCF across all joints. This study provides foundation data and computational methods to enable further evaluation and optimisation of semi-recumbent cycling for application in rehabilitation after SCI and other neurological disorders.


Subject(s)
Bicycling , Humans , Male , Bicycling/physiology , Adult , Biomechanical Phenomena , Female , Hip Joint/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Knee Joint/physiology , Ankle Joint/physiology , Models, Biological , Electromyography/methods
5.
Osteoarthritis Cartilage ; 32(6): 730-739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442767

ABSTRACT

OBJECTIVE: To develop and validate a neural network to estimate hip contact forces (HCF), and lower body kinematics and kinetics during walking in individuals with hip osteoarthritis (OA) using synthesised anatomical key points and electromyography. To assess the capability of the neural network to detect directional changes in HCF resulting from prescribed gait modifications. DESIGN: A calibrated electromyography-informed neuromusculoskeletal model was used to compute lower body joint angles, moments, and HCF for 17 participants with mild-to-moderate hip OA. Anatomical key points (e.g., joint centres) were synthesised from marker trajectories and augmented with bias and noise expected from computer vision-based pose estimation systems. Temporal convolutional and long short-term memory neural networks (NN) were trained using leave-one-subject-out validation to predict neuromusculoskeletal modelling outputs from the synthesised key points and measured electromyography data from 5 hip-spanning muscles. RESULTS: HCF was predicted with an average error of 13.4 ± 7.1% of peak force. Joint angles and moments were predicted with an average root-mean-square-error of 5.3 degrees and 0.10 Nm/kg, respectively. The NN could detect changes in peak HCF that occur due to gait modifications with good agreement with neuromusculoskeletal modelling (r2 = 0.72) and a minimum detectable change of 9.5%. CONCLUSION: The developed neural network predicted HCF and lower body joint angles and moments in individuals with hip OA using noisy synthesised key point locations with acceptable errors. Changes in HCF magnitude due to gait modifications were predicted with high accuracy. These findings have important implications for implementation of load-modification based gait retraining interventions for people with hip OA in a natural environment (i.e., home, clinic).


Subject(s)
Electromyography , Gait , Hip Joint , Neural Networks, Computer , Osteoarthritis, Hip , Humans , Osteoarthritis, Hip/physiopathology , Electromyography/methods , Female , Male , Biomechanical Phenomena , Middle Aged , Hip Joint/physiopathology , Aged , Gait/physiology , Walking/physiology , Muscle, Skeletal/physiopathology , Weight-Bearing/physiology
6.
Biomech Model Mechanobiol ; 23(3): 1077-1090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459157

ABSTRACT

Cerebral palsy (CP) includes a group of neurological conditions caused by damage to the developing brain, resulting in maladaptive alterations of muscle coordination and movement. Estimates of joint moments and contact forces during locomotion are important to establish the trajectory of disease progression and plan appropriate surgical interventions in children with CP. Joint moments and contact forces can be estimated using electromyogram (EMG)-informed neuromusculoskeletal models, but a reduced number of EMG sensors would facilitate translation of these computational methods to clinics. This study developed and evaluated a muscle synergy-informed neuromusculoskeletal modelling approach using EMG recordings from three to four muscles to estimate joint moments and knee contact forces of children with CP and typically developing (TD) children during walking. Using only three to four experimental EMG sensors attached to a single leg and leveraging an EMG database of walking data of TD children, the synergy-informed approach estimated total knee contact forces comparable to those estimated by EMG-assisted approaches that used 13 EMG sensors (children with CP, n = 3, R2 = 0.95 ± 0.01, RMSE = 0.40 ± 0.14 BW; TD controls, n = 3, R2 = 0.93 ± 0.07, RMSE = 0.19 ± 0.05 BW). The proposed synergy-informed neuromusculoskeletal modelling approach could enable rapid evaluation of joint biomechanics in children with unimpaired and impaired motor control within a clinical environment.


Subject(s)
Cerebral Palsy , Electromyography , Knee Joint , Knee , Humans , Cerebral Palsy/physiopathology , Child , Knee/physiopathology , Knee/physiology , Biomechanical Phenomena , Male , Knee Joint/physiopathology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Female , Models, Biological , Walking/physiology
7.
ACS Appl Mater Interfaces ; 16(1): 1638-1649, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38110238

ABSTRACT

Portable and wearable electronics for biomechanical data collection have become a growing part of everyday life. As smart technology improves and integrates into our lives, some devices remain ineffective, expensive, or difficult to access. We propose a washable iron-on textile pressure sensor for biometric data acquisition. Biometric data, such as human gait, are a powerful tool for the monitoring and diagnosis of ambulance and physical activity. To demonstrate this, our washable iron-on device is embedded into a sock and compared to gold standard force plate data. Biomechanical testing showed that our embedded sensor displayed a high aptitude for gait event detection, successfully identifying over 96% of heel strike and toe-off gait events. Our device demonstrates excellent attributes for further investigations into low-cost, washable, and highly versatile iron-on textiles for specialized biometric analysis.


Subject(s)
Wearable Electronic Devices , Humans , Gait , Textiles , Mechanical Phenomena , Exercise
8.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941242

ABSTRACT

This study implemented an electromyogram (EMG)-informed neuromusculoskeletal (NMS) model evaluating the volitional contributions to muscle forces and joint moments during functional electrical stimulation (FES). The NMS model was calibrated using motion and EMG (biceps brachii and triceps brachii) data recorded from able-bodied participants (n=3) performing weighted elbow flexion and extension cycling movements while equipped with an EMG-controlled closed-loop FES system. Models were executed using three computational approaches (i) EMG-driven, (ii) EMG-hybrid and (iii) EMG-assisted to estimate muscle forces and joint moments. Both EMG-hybrid and EMG-assisted modes were able estimate the elbow moment (root mean squared error and coefficient of determination), but the EMG-hybrid method also enabled quantifying the volitional contributions to muscle forces and elbow moments during FES. The proposed modelling method allows for assessing volitional contributions of patients to muscle force during FES rehabilitation, and could be used as biomarkers of recovery, biofeedback, and for real-time control of combined FES and robotic systems.


Subject(s)
Elbow Joint , Muscle, Skeletal , Humans , Electromyography/methods , Muscle, Skeletal/physiology , Elbow , Elbow Joint/physiology , Arm
9.
PLoS One ; 18(10): e0292867, 2023.
Article in English | MEDLINE | ID: mdl-37824493

ABSTRACT

The purpose of this study was to determine the effect of donor muscle morphology following tendon harvest in anterior cruciate ligament (ACL) reconstruction on muscular support of the tibiofemoral joint during sidestep cutting. Magnetic resonance imaging (MRI) was used to measure peak cross-sectional area (CSA) and volume of the semitendinosus (ST) and gracilis (GR) muscles and tendons (bilaterally) in 18 individuals following ACL reconstruction. Participants performed sidestep cutting tasks in a biomechanics laboratory during which lower-limb electromyography, ground reaction loads, whole-body motions were recorded. An EMG driven neuro-musculoskeletal model was subsequently used to determine force from 34 musculotendinous units of the lower limb and the contribution of the ST and GR to muscular support of the tibiofemoral joint based on a normal muscle-tendon model (Standard model). Then, differences in peak CSA and volume between the ipsilateral/contralateral ST and GR were used to adjust their muscle-tendon parameters in the model followed by a recalibration to determine muscle force for 34 musculotendinous units (Adjusted model). The combined contribution of the donor muscles to muscular support about the medial and lateral compartments were reduced by 52% and 42%, respectively, in the adjusted compared to standard model. While the semimembranosus (SM) increased its contribution to muscular stabilisation about the medial and lateral compartment by 23% and 30%, respectively. This computer simulation study demonstrated the muscles harvested for ACL reconstruction reduced their support of the tibiofemoral joint during sidestep cutting, while the SM may have the potential to partially offset these reductions. This suggests donor muscle impairment could be a factor that contributes to ipsilateral re-injury rates to the ACL following return to sport.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Hamstring Muscles , Hamstring Tendons , Humans , Hamstring Muscles/diagnostic imaging , Hamstring Muscles/surgery , Anterior Cruciate Ligament/surgery , Computer Simulation , Knee Joint/diagnostic imaging , Knee Joint/surgery , Knee Joint/physiology , Lower Extremity/surgery , Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament Injuries/surgery , Hamstring Tendons/surgery
10.
J Appl Biomech ; 39(5): 347-354, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37567581

ABSTRACT

There is a powerful global trend toward deeper integration of digital twins into modern life driven by Industry 4.0 and 5.0. Defense, agriculture, engineering, manufacturing, and urban planning sectors have thoroughly incorporated digital twins to great benefit across their respective product lifecycles. Despite clear benefits, a digital twin framework for health and medical sectors is yet to emerge. This paper proposes a digital twin framework for precision neuromusculoskeletal health care. We build upon the International Standards Organization framework for digital twins for manufacturing by presenting best available computational models within a digital twin framework for clinical application. We map a use case for modeling Achilles tendon mechanobiology, highlighting how current modeling practices align with our proposed digital twin framework. Similarly, we map a use case for advanced neurorehabilitation technology, highlighting the role of a digital twin in control of systems where human and machine are interfaced. Future work must now focus on creating an informatic representation to govern how digital data are passed to, from, and within the digital twin, as well as specific standards to declare which measurement systems and modeling methods are acceptable to move toward widespread use of the digital twin framework for precision neuromusculoskeletal health care.


Subject(s)
Achilles Tendon , Musculoskeletal System , Neurological Rehabilitation , Humans
11.
Article in English | MEDLINE | ID: mdl-37459270

ABSTRACT

The Achilles tendon (AT) is sensitive to mechanical loading, with appropriate strain improving tissue mechanical and material properties. Estimating free AT strain is currently possible through personalized neuromusculoskeletal (NMSK) modeling; however, this approach is time-consuming and requires extensive laboratory data. To enable in-field assessments, we developed an artificial intelligence (AI) workflow to predict free AT strain during running from motion capture data. Ten keypoints commonly used in pose estimation algorithms (e.g., OpenPose) were synthesized from motion capture data and noise was added to represent real-world data obtained using video cameras. Two AI workflows were compared: (1) a Long Short-Term Memory (LSTM) neural network that predicted free AT strain directly (called LSTM only workflow); and (2) an LSTM neural network that predicted AT force which was subsequently converted to free AT strain using a personalized force-strain curve (called LSTM+ workflow). AI models were trained and evaluated using estimates of free AT strain obtained from a validated NMSK model with personalized AT force-strain curve. The effect of using different input features (position, velocity, and acceleration of keypoints, height and mass) on free AT strain predictions was also assessed. The LSTM+ workflow significantly improved the predictions of free AT strain compared to the LSTM only workflow (p < 0.001). The best free AT strain predictions were obtained using positions and velocities of keypoints as well as the height and mass of the participants as input, with average time-series root mean square error (RMSE) of 1.72±0.95% strain and r2 of 0.92±0.10, and peak strain RMSE of 2.20% and r2 of 0.54. In conclusion, we showed feasibility of predicting accurate free AT strain during running using low fidelity pose estimation data.


Subject(s)
Achilles Tendon , Artificial Intelligence , Humans , Motion Capture , Neural Networks, Computer , Algorithms
12.
J Sci Med Sport ; 26 Suppl 1: S30-S39, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37149408

ABSTRACT

OBJECTIVES: The physical demands of military service place soldiers at risk of musculoskeletal injuries and are major concerns for military capability. This paper outlines the development new training technologies to prevent and manage these injuries. DESIGN: Narrative review. METHODS: Technologies suitable for integration into next-generation training devices were examined. We considered the capability of technologies to target tissue level mechanics, provide appropriate real-time feedback, and their useability in-the-field. RESULTS: Musculoskeletal tissues' health depends on their functional mechanical environment experienced in military activities, training and rehabilitation. These environments result from the interactions between tissue motion, loading, biology, and morphology. Maintaining health of and/or repairing joint tissues requires targeting the "ideal" in vivo tissue mechanics (i.e., loading and strain), which may be enabled by real-time biofeedback. Recent research has shown that these biofeedback technologies are possible by integrating a patient's personalised digital twin and wireless wearable devices. Personalised digital twins are personalised neuromusculoskeletal rigid body and finite element models that work in real-time by code optimisation and artificial intelligence. Model personalisation is crucial in obtaining physically and physiologically valid predictions. CONCLUSIONS: Recent work has shown that laboratory-quality biomechanical measurements and modelling can be performed outside the laboratory with a small number of wearable sensors or computer vision methods. The next stage is to combine these technologies into well-designed easy to use products.


Subject(s)
Military Personnel , Musculoskeletal Diseases , Wearable Electronic Devices , Humans , Artificial Intelligence , Musculoskeletal Diseases/prevention & control , Computers
13.
J Biomech ; 152: 111557, 2023 05.
Article in English | MEDLINE | ID: mdl-37019066

ABSTRACT

Medical device regulatory standards are increasingly incorporating computational modelling and simulation to accommodate advanced manufacturing and device personalization. We present a method for robust testing of engineered soft tissue products involving a digital twin paradigm in combination with robotic systems. We developed and validated a digital twin framework for calibrating and controlling robotic-biological systems. A forward dynamics model of the robotic manipulator was developed, calibrated, and validated. After calibration, the accuracy of the digital twin in reproducing the experimental data improved in the time domain for all fourteen tested configurations and improved in frequency domain for nine configurations. We then demonstrated displacement control of a spring in lieu of a soft tissue element in a biological specimen. The simulated experiment matched the physical experiment with 0.09 mm (0.001%) root-mean-square error for a 2.9 mm (5.1%) length change. Finally, we demonstrated kinematic control of a digital twin of the knee through 70-degree passive flexion kinematics. The root-mean-square error was 2.00°, 0.57°, and 1.75° degrees for flexion, adduction, and internal rotations, respectively. The system well controlled novel mechanical elements and generated accurate kinematics in silico for a complex knee model. This calibration method could be applied to other situations where the specimen is poorly represented in the model environment (e.g., human or animal tissues), and the control system could be extended to track internal parameters such as tissue strain (e.g., control knee ligament strain). Further development of this framework can facilitate medical device testing and innovative biomechanics research.


Subject(s)
Robotic Surgical Procedures , Humans , Knee Joint , Knee , Biomechanical Phenomena , Ligaments, Articular , Range of Motion, Articular
14.
J Biomech ; 149: 111503, 2023 03.
Article in English | MEDLINE | ID: mdl-36842407

ABSTRACT

Electromechanical delay (EMD) and maximum isometric muscle force (FoM) are important parameters for joint contact force calculation with EMG-informed neuromusculoskeletal (NMS) models. These parameters can vary between tasks (EMD) and individuals (EMD and FoM), making it challenging to establish representative values. One promising approach is to personalise candidate parameters to the participant (e.g., FoM by regression equation) and then adjust all parameters within a calibration (i.e., numerical optimisation) to minimise error between corresponding pairs of experimental measures and model-predicted values. The purpose of this study was to determine whether calibration of an NMS model resulted in consistent joint contact forces, regardless of EMD value or personalisation of FoM. Hip, knee, and ankle contact forces were predicted for 28 participants using EMG-informed NMS models. Differences in joint contact forces with EMD were examined in six models, calibrated with EMD from 15 to 110 ms. Differences in joint contact forces with personalisation of FoM were examined in two models, both calibrated with the same initial EMD (50 ms), one with generic and one with personalised values for FoM. For all models, joint contact force peaks during the first and second halves of stance were extracted and compared using a repeated-measures analysis of variance. Calibrated models with EMD set between 35 and 70 ms produced similar magnitude and timing of peak joint contact forces. Compared with generic values, personalising and then calibrating FoM resulted in comparable peak contact forces at hip, but not knee or ankle, while also producing muscle-specific tensions similar to reported literature. Overall, EMD between 35 and 70 ms and personalised initial values of FoM before calibration are advised for EMG-informed NMS modelling.


Subject(s)
Muscle, Skeletal , Walking , Humans , Muscle, Skeletal/physiology , Electromyography , Walking/physiology , Calibration , Mechanical Phenomena
15.
Osteoarthr Cartil Open ; 4(1): 100230, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36474469

ABSTRACT

Objective: (i) Compare the feasibility of three load modification strategies to immediately increase hip contact force in people with hip osteoarthritis (OA) using real-time visual biofeedback during walking, and (ii) prospectively evaluate changes in pain and physical function following 6-weeks of walking using a prescribed personalised load modification strategy. Design: Twenty participants with symptomatic mild-to-moderate hip OA walked on an instrumented treadmill while motion capture and electromyographic data were recorded (normal walk), then under three conditions: (i)neutral trunk lean; (ii)neutral pelvic obliquity; (iii)increased step length. The biomechanical parameter of interest and corresponding target value were displayed in real-time. Hip contact forces were subsequently computed using a calibrated electromyography-informed neuromusculoskeletal model. A decision tree was used to prescribe a personalised load modification strategy to each participant for integration into walking over 6-weeks. Results: Only the step length modification significantly increased peak hip contact force compared to normal walking when performed by all participants (11.34 [95%CI 4.54,18.13]%, P â€‹< â€‹0.01). After participants were prescribed a personalised load modification strategy, both neutral pelvis (n â€‹= â€‹5, 11.88[95%CI -0.49,24.24]%) and step length (n â€‹= â€‹10, 12.79[95%CI 0.49,25.09]%) subgroups increased peak hip contact force >10%. After 6-weeks, 77% and 46% of participants reported a clinically important improvement in hip pain during walking and physical function, respectively. Conclusion: Most participants with hip OA could immediately increase hip contact force through personalised movement retraining by a magnitude estimated to promote cartilage heath and reported an improvement in symptoms after 6-weeks. Findings provide preliminary support for a personalised load modification-based intervention for hip OA.

16.
Biomech Model Mechanobiol ; 21(6): 1873-1886, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36229699

ABSTRACT

Neuromusculoskeletal models are a powerful tool to investigate the internal biomechanics of an individual. However, commonly used neuromusculoskeletal models are generated via linear scaling of generic templates derived from elderly adult anatomies and poorly represent a child, let alone children with a neuromuscular disorder whose musculoskeletal structures and muscle activation patterns are profoundly altered. Model personalization can capture abnormalities and appropriately describe the underlying (altered) biomechanics of an individual. In this work, we explored the effect of six different levels of neuromusculoskeletal model personalization on estimates of muscle forces and knee joint contact forces to tease out the importance of model personalization for normal and abnormal musculoskeletal structures and muscle activation patterns. For six children, with and without cerebral palsy, generic scaled models were developed and progressively personalized by (1) tuning and calibrating musculotendon units' parameters, (2) implementing an electromyogram-assisted approach to synthesize muscle activations, and (3) replacing generic anatomies with image-based bony geometries, and physiologically and physically plausible muscle kinematics. Biomechanical simulations of gait were performed in the OpenSim and CEINMS software on ten overground walking trials per participant. A mixed-ANOVA test, with Bonferroni corrections, was conducted to compare all models' estimates. The model with the highest level of personalization produced the most physiologically plausible estimates. Model personalization is crucial to produce physiologically plausible estimates of internal biomechanical quantities. In particular, personalization of musculoskeletal anatomy and muscle activation patterns had the largest effect overall. Increased research efforts are needed to ease the creation of personalized neuromusculoskeletal models.


Subject(s)
Knee Joint , Muscle, Skeletal , Child , Adult , Humans , Aged , Muscle, Skeletal/physiology , Electromyography , Knee Joint/physiology , Gait/physiology , Walking/physiology , Biomechanical Phenomena , Models, Biological
17.
Am J Sports Med ; 50(12): 3198-3209, 2022 10.
Article in English | MEDLINE | ID: mdl-36177759

ABSTRACT

BACKGROUND: Femoroacetabular impingement syndrome is characterized by chondrolabral damage and hip pain. The specific biomechanics used by people with femoroacetabular impingement syndrome during daily activities may exacerbate their symptoms. Femoroacetabular impingement syndrome can be treated nonoperatively or surgically; however, differential treatment effects on walking biomechanics have not been examined. PURPOSE: To compare the 12-month effects of physical therapist-led care or arthroscopy on trunk, pelvis, and hip kinematics as well as hip moments during walking. STUDY DESIGN: Secondary analysis of multi-centre, pragmatic, two-arm superiority randomized controlled trial subsample; Level of evidence, 1. METHODS: A subsample of 43 participants from the Australian Full randomised controlled trial of Arthroscopic Surgery for Hip Impingement versus best cONventional (FASHIoN trial) underwent gait analysis and completed the International Hip Outcome Tool (iHOT-33) at both baseline and 12 months after random allocation to physical therapist-led care (personalized hip therapy; n = 22; mean age 35; 41% female) or arthroscopy (n = 21; mean age 36; 48% female). Changes in trunk, pelvis, and hip biomechanics were compared between treatment groups across the gait cycle using statistical parametric mapping. Associations between changes in iHOT-33 and changes in hip kinematics across 3 planes of motion were examined. RESULTS: As compared with the arthroscopy group, the personalized hip therapy group increased its peak hip adduction moments (mean difference = 0.35 N·m/body weight·height [%] [95% CI, 0.05-0.65]; effect size = 0.72; P = .02). Hip adduction moments in the arthroscopy group were unchanged in response to treatment. No other between-group differences were detected. Improvements in iHOT-33 were not associated with changes in hip kinematics. CONCLUSION: Peak hip adduction moments were increased in the personalized hip therapy group and unchanged in the arthroscopy group. No biomechanical changes favoring arthroscopy were detected, suggesting that personalized hip therapy elicits greater changes in hip moments during walking at 12-month follow-up. Twelve-month changes in hip-related quality of life were not associated with changes in hip kinematics.


Subject(s)
Femoracetabular Impingement , Physical Therapists , Adult , Arthroscopy , Australia , Biomechanical Phenomena , Female , Femoracetabular Impingement/surgery , Hip Joint/surgery , Humans , Male , Quality of Life , Treatment Outcome , Walking/physiology
18.
Sci Rep ; 12(1): 11486, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798797

ABSTRACT

Landing manoeuvres are an integral task for humans, especially in the context of sporting activities. Such tasks often involve landing on one leg which requires the coordination of multiple muscles in order to effectively dissipate kinetic energy. However, no prior studies have provided a detailed description of the strategy used by the major lower limb muscles to perform single-leg landing. The purpose of the present study was to understand how humans coordinate their lower limb muscles during a single-leg landing task. Marker trajectories, ground reaction forces (GRFs), and surface electromyography (EMG) data were collected from healthy male participants performing a single-leg landing from a height of 0.31 m. An EMG-informed neuromusculoskeletal modelling approach was used to generate neuromechanical simulations of the single-leg landing task. The muscular strategy was determined by computing the magnitude and temporal characteristics of musculotendon forces and energetics. Muscle function was determined by computing muscle contributions to lower limb net joint moments, GRFs and lower limb joint contact forces. It was found that the vasti, soleus, gluteus maximus and gluteus medius produced the greatest muscle forces and negative (eccentric) mechanical work. Downward momentum of the centre-of-mass was resisted primarily by the soleus, vasti, gastrocnemius, rectus femoris, and gluteus maximus, whilst forward momentum was primarily resisted by the quadriceps (vasti and rectus femoris). Flexion of the lower limb joints was primarily resisted by the uni-articular gluteus maximus (hip), vasti (knee) and soleus (ankle). Overall, our findings provide a unique insight into the muscular strategy used by humans during a landing manoeuvre and have implications for the design of athletic training programs.


Subject(s)
Leg , Lower Extremity , Biomechanical Phenomena/physiology , Electromyography , Humans , Knee Joint/physiology , Leg/physiology , Lower Extremity/physiology , Male , Muscle, Skeletal/physiology
19.
J Biomech ; 141: 111220, 2022 08.
Article in English | MEDLINE | ID: mdl-35841785

ABSTRACT

The deep hip muscles are often omitted in studies investigating hip contact forces using neuromusculoskeletal modelling methods. However, recent evidence indicates the deep hip muscles have potential to change the direction of hip contact force and could have relevance for hip contact loading estimates. Further, it is not known whether deep hip muscle excitation patterns can be accurately estimated using neuromusculoskeletal modelling or require measurement (through invasive and time-consuming methods) to inform models used to estimate hip contact forces. We calculated hip contact forces during walking, squatting, and squat-jumping for 17 participants using electromyography (EMG)-informed neuromusculoskeletal modelling with (informed) and without (synthesized) intramuscular EMG for the deep hip muscles (piriformis, obturator internus, quadratus femoris). Hip contact force magnitude and direction, calculated as the angle between hip contact force and vector from femoral head to acetabular center, were compared between configurations using a paired t-test deployed through statistical parametric mapping (P < 0.05). Additionally, root mean square error, correlation coefficients (R2), and timing accuracy between measured and modelled deep hip muscle excitation patterns were computed. No significant between-configuration differences in hip contact force magnitude or direction were found for any task. However, the synthesized method poorly predicted (R2-range 0.02-0.3) deep hip muscle excitation patterns for all tasks. Consequently, intramuscular EMG of the deep hip muscles may be unnecessary when estimating hip contact force magnitude or direction using EMG-informed neuromusculoskeletal modelling, though is likely essential for investigations of deep hip muscle function.


Subject(s)
Hip , Muscle, Skeletal , Biomechanical Phenomena , Electromyography , Humans , Muscle, Skeletal/physiology , Thigh , Walking/physiology
20.
PLoS One ; 17(6): e0257171, 2022.
Article in English | MEDLINE | ID: mdl-35657960

ABSTRACT

BACKGROUND: Previous investigations on valgus knee bracing have mostly used the external knee adduction moment. This is a critical limitation, as the external knee adduction moment does not account for muscle forces that contribute substantially to the medial tibiofemoral contact force (MTCF) during walking. The aims of this pilot study were to: 1) determine the effect of a valgus knee brace on MTCF; 2) determine whether the effect is more pronounced after 8 weeks of brace use; 3) assess the feasibility of an 8-week brace intervention. METHODS: Participants with medial radiographic knee OA and varus malalignment were fitted with an Össur Unloader One© brace. Participants were instructed to wear the brace for 8 weeks. The MTCF was estimated via an electromyogram-assisted neuromuscular model with and without the knee brace at week 0 and week 8. Feasibility outcomes included change in symptoms, quality of life, confidence, acceptability, adherence and adverse events. RESULTS: Of the 30 (60% male) participants enrolled, 28 (93%) completed 8-week outcome assessments. There was a main effect of the brace (p<0.001) on peak MTCF and MTCF impulse, but no main effect for time (week 0 and week 8, p = 0.10), and no interaction between brace and time (p = 0.62). Wearing the brace during walking significantly reduced the peak MTCF (-0.05 BW 95%CI [-0.10, -0.01]) and MTCF impulse (-0.07 BW.s 95%CI [-0.09, -0.05]). Symptoms and quality of life improved by clinically relevant magnitudes over the 8-week intervention. Items relating to confidence and acceptability were rated relatively highly. Participants wore the brace on average 6 hrs per day. Seventeen participants reported 30 minor adverse events over an 8-week period. CONCLUSION: Although significant, reductions in the peak MTCF and MTCF while wearing the knee brace were small. No effect of time on MTCF was observed. Although there were numerous minor adverse events, feasibility outcomes were generally favourable. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry (12619000622101).


Subject(s)
Osteoarthritis, Knee , Australia , Biomechanical Phenomena/physiology , Braces , Female , Follow-Up Studies , Humans , Knee Joint/physiology , Male , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/therapy , Pilot Projects , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...