Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Diabetes Care ; 46(12): 2180-2187, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37729080

ABSTRACT

OBJECTIVE: Assess the safety and efficacy of automated insulin delivery (AID) in adults with type 1 diabetes (T1D) at high risk for hypoglycemia. RESEARCH DESIGN AND METHODS: Participants were 72 adults with T1D who used an insulin pump with Clarke Hypoglycemia Perception Awareness scale score >3 and/or had severe hypoglycemia during the previous 6 months confirmed by time below range (TBR; defined as sensor glucose [SG] reading <70 mg/dL) of at least 5% during 2 weeks of blinded continuous glucose monitoring (CGM). Parallel-arm, randomized trial (2:1) of AID (Tandem t:slim ×2 with Control-IQ technology) versus CGM and pump therapy for 12 weeks. The primary outcome was TBR change from baseline. Secondary outcomes included time in target range (TIR; 70-180 mg/dL), time above range (TAR), mean SG reading, and time with glucose level <54 mg/dL. An optional 12-week extension with AID was offered to all participants. RESULTS: Compared with the sensor and pump (S&P), AID resulted in significant reduction of TBR by -3.7% (95% CI -4.8, -2.6), P < 0.001; an 8.6% increase in TIR (95% CI 5.2, 12.1), P < 0.001; and a -5.3% decrease in TAR (95% CI -87.7, -1.8), P = 0.004. Mean SG reading remained similar in the AID and S&P groups. During the 12-week extension, the effects of AID were sustained in the AID group and reproduced in the S&P group. Two severe hypoglycemic episodes occurred using AID. CONCLUSIONS: In adults with T1D at high risk for hypoglycemia, AID reduced the risk for hypoglycemia more than twofold, as quantified by TBR, while improving TIR and reducing hyperglycemia. Hence, AID is strongly recommended for this specific population.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Adult , Humans , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Insulin/adverse effects , Hypoglycemic Agents/adverse effects , Blood Glucose , Blood Glucose Self-Monitoring/methods , Hypoglycemia/complications , Insulin, Regular, Human/therapeutic use , Insulin Infusion Systems
2.
Diabetes Technol Ther ; 25(6): 395-403, 2023 06.
Article in English | MEDLINE | ID: mdl-36927054

ABSTRACT

Background: It is unclear whether hybrid closed-loop (HCL) therapy attenuates the metabolic impact of missed or suboptimal meal insulin bolus compared with sensor-augmented pump (SAP) therapy in children with type 1 diabetes in free-living conditions. Methods: This is an ancillary study from a multicenter randomized controlled trial that compared 24/7 HCL with evening and night (E/N) HCL for 36 weeks in children between 6 and 12 years old. In the present study, the 60 children from the E/N arm underwent a SAP phase, an E/N HCL for 18 weeks, then a 24/7 phase for 18 weeks, extended for 36 more weeks. The last 28-30 days of each of the four phases were analyzed according to meal bolus management (cumulated 6817 days). The primary endpoint was the percentage of time that the sensor glucose was in the target range (TIR, 70-180 mg/dL) according to the number of missed boluses per day. Findings: TIR was 54% ± 10% with SAP, 63% ± 7% with E/N HCL, and steadily 67% ± 7% with 24/7 HCL. From the SAP phase to 72 weeks of HCL, the percentage of days with at least one missed meal bolus increased from 12% to 22%. Estimated marginal (EM) mean TIR when no bolus was missed was 54% (95% confidence intervals [CI] 53-56) in SAP and it was 13% higher (95% CI 11-15) in the 24/7 HCL phase. EM mean TIR with 1 and ≥2 missed boluses/day was 49.5% (95% CI 46-52) and 45% (95% CI 39-51) in SAP, and it was 15% (95% CI 14-16) and 17% higher (95% CI 6-28), respectively, in the 24/7 HCL phase (P < 0.05 for all comparisons vs. SAP). Interpretation: HCL persistently improves glycemic control compared with SAP, even in case of meal bolus omission. ClinicalTrials.gov (NCT03739099).


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Child , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/therapeutic use , Blood Glucose/metabolism , Insulin Infusion Systems , Insulin/therapeutic use , Blood Glucose Self-Monitoring
3.
Diabetes Obes Metab ; 24(3): 511-521, 2022 03.
Article in English | MEDLINE | ID: mdl-34816597

ABSTRACT

AIM: To assess the safety and efficacy of hybrid closed-loop (HCL) insulin delivery 24/7 versus only evening and night (E/N), and on extended 24/7 use, in free-living children with type 1 diabetes. MATERIALS AND METHODS: Prepubertal children (n = 122; 49 females/73 males; age, 8.6 ± 1.6 years; diabetes duration, 5.2 ± 2.3 years; insulin pump use, 4.6 ± 2.5 years; HbA1c 7.7% ± 0.7%/61 ± 5 mmol/mol) from four centres were randomized for 24/7 versus E/N activation of the Tandem Control-IQ system for 18 weeks. Afterwards, all children used the activated system 24/7 for 18 more weeks. The primary outcome was the percentage of time spent in the 70-180 mg/dL glucose range (TIR). RESULTS: HCL was active 94.1% and 51.1% of the time in the 24/7 and E/N modes, respectively. TIR from baseline increased more in the 24/7 versus the E/N mode (52.9% ± 9.5% to 67.3% ± 5.6% [+14.4%, 95% CI 12.4%-16.7%] vs. 55.1% ± 10.8% to 64.7% ± 7.0% [+9.6%, 95% CI 7.4%-11.6%]; P = .001). Mean percentage time below range was similarly reduced, from 4.2% and 4.6% to 2.7%, and the mean percentage time above range decreased more in the 24/7 mode (41.9% to 30.0% [-11.9%, 95% CI 9.7%-14.6%] vs. 39.8% to 32.6% [-7.2%, 95% CI 5.0%-9.9%]; P = .007). TIR increased through the whole range of baseline levels and always more with 24/7 use. The results were maintained during the extension phase in those initially on 24/7 use and improved in those with initial E/N use up to those with 24/7 use. Neither ketoacidosis nor severe hypoglycaemia occurred. CONCLUSIONS: The current study shows the safety and efficacy of the Tandem Control-IQ system in free-living children with type 1 diabetes for both E/N and 24/7 use; 24/7 use shows better outcomes, sustained for up to 36 weeks with no safety issues.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Child , Cross-Over Studies , Diabetes Mellitus, Type 1/drug therapy , Female , Humans , Hypoglycemic Agents/adverse effects , Insulin/therapeutic use , Insulin Infusion Systems , Male
4.
J Control Release ; 336: 1-15, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34118339

ABSTRACT

Continuous intraperitoneal insulin infusion, from an implanted insulin pump connected to a catheter that delivers insulin directly to the peritoneal cavity has many clinical advantages for patients with Type 1 diabetes. However, the ongoing incidence of catheter obstructions remains a barrier to the widespread use of this therapy. To date, the root cause of these obstructions remains unknown. Here, a two-year clinical investigation was conducted, along with the development of an animal model to enable a mechanistic investigation into this issue. This novel animal model was able to mimic the catheter obstructions that occur in patients and, fortuitously, at an accelerated rate. This model allowed for independent assessment of each potential cause associated with catheter obstructions to help identify the root cause. Both macroscopic and microscopic analysis were conducted with regards to the onset and progression of catheter obstructions, along with monitoring of insulin delivery. Interestingly, although insulin aggregation occurs in insulin pumps and insulin aggregates were found in some catheter obstructions, insulin is unlikely to be the root cause, since obstructions also occurred in the control groups where only diluent (no insulin) was administered to the animals. Inflammatory cells, different phenotypes of fibroblasts, as well as collagen were observed in all obstructed catheters explanted from the patients and the animals. The presence of these cells and collagen is indicative of a typical foreign body reaction. In addition, the dynamic change in the fibroblasts with respect to morphology, phenotype, and spatial distribution suggests that tissue irritation-mediated epithelial to mesenchymal transition plays a role in catheter obstructions.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin , Catheter Obstruction , Diabetes Mellitus, Type 1/drug therapy , Epithelial-Mesenchymal Transition , Foreign-Body Reaction/chemically induced , Humans , Insulin/therapeutic use , Insulin Infusion Systems
5.
Diabetes Obes Metab ; 21(1): 183-187, 2019 01.
Article in English | MEDLINE | ID: mdl-30047223

ABSTRACT

This randomized control trial investigated glucose control with closed-loop (CL) versus threshold-low-glucose-suspend (TLGS) insulin pump delivery in pre-pubertal children with type 1 diabetes in supervised hotel conditions. The patients [n = 24, age range: 7-12, HbA1c: 7.5 ± 0.5% (58 ± 5 mmol/mol)] and their parents were admitted twice at a 3-week interval. CL control to range or TLGS set at 3.9 mmoL/L were assessed for 48 hour in randomized order. Admissions included three meals and one snack, and physical exercise. Meal boluses followed individual insulin/carb ratios. While overnight (22:00-08:00) per cent continuous glucose monitoring (CGM) time below 3.9 mmol/L (primary outcome) was similar, time in ranges 3.9 to 10.0 and 3.9 to 7.8 mmoL/L and mean CGM were all significantly improved with CL (P < 0.001). These results were confirmed over the whole 48 hour. Disconnections between devices and limited accuracy of glucose sensors in the hypoglycaemic range appeared as limiting factors for optimal control. CL mode was well accepted while fear of hypoglycaemia was unchanged. CL did not minimize nocturnal hypoglycaemia exposure but improved time in target range compared to TLGS. Although safe and well-accepted, CL systems would benefit from more integrated devices.


Subject(s)
Algorithms , Blood Glucose/drug effects , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemia/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Blood Glucose/analysis , Child , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Humans , Hypoglycemia/prevention & control , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
6.
Diabetes Obes Metab ; 19(12): 1698-1705, 2017 12.
Article in English | MEDLINE | ID: mdl-28474383

ABSTRACT

AIMS: To compare intraperitoneal (IP) to subcutaneous (SC) insulin delivery in an artificial pancreas (AP). RESEARCH DESIGN AND METHODS: Ten adults with type 1 diabetes participated in a non-randomized, non-blinded sequential AP study using the same SC glucose sensing and Zone Model Predictive Control (ZMPC) algorithm adjusted for insulin clearance. On first admission, subjects underwent closed-loop control with SC delivery of a fast-acting insulin analogue for 24 hours. Following implantation of a DiaPort IP insulin delivery system, the identical 24-hour trial was performed with IP regular insulin delivery. The clinical protocol included 3 unannounced meals with 70, 40 and 70 g carbohydrate, respectively. Primary endpoint was time spent with blood glucose (BG) in the range of 80 to 140 mg/dL (4.4-7.7 mmol/L). RESULTS: Percent of time spent within the 80 to 140 mg/dL range was significantly higher for IP delivery than for SC delivery: 39.8 ± 7.6 vs 25.6 ± 13.1 ( P = .03). Mean BG (mg/dL) and percent of time spent within the broader 70 to 180 mg/dL range were also significantly better for IP insulin: 151.0 ± 11.0 vs 190.0 ± 31.0 ( P = .004) and 65.7 ± 9.2 vs 43.9 ± 14.7 ( P = .001), respectively. Superiority of glucose control with IP insulin came from the reduced time spent in hyperglycaemia (>180 mg/dL: 32.4 ± 8.9 vs 53.5 ± 17.4, P = .014; >250 mg/dL: 5.9 ± 5.6 vs 23.0 ± 11.3, P = .0004). Higher daily doses of insulin (IU) were delivered with the IP route (43.7 ± 0.1 vs 32.3 ± 0.1, P < .001) with no increased percent time spent <70 mg/dL (IP: 2.5 ± 2.9 vs SC: 4.1 ± 5.3, P = .42). CONCLUSIONS: Glycaemic regulation with fully-automated AP delivering IP insulin was superior to that with SC insulin delivery. This pilot study provides proof-of-concept for an AP system combining a ZMPC algorithm with IP insulin delivery.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin Lispro/administration & dosage , Pancreas, Artificial , Adult , Algorithms , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Female , France , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Infusions, Parenteral , Infusions, Subcutaneous , Insulin Infusion Systems/adverse effects , Insulin Lispro/adverse effects , Insulin Lispro/therapeutic use , Insulin, Regular, Human/administration & dosage , Insulin, Regular, Human/adverse effects , Insulin, Regular, Human/therapeutic use , Male , Middle Aged , Pancreas, Artificial/adverse effects , Pilot Projects , Proof of Concept Study
7.
Rev Infirm ; 66(230): 35-37, 2017 Apr.
Article in French | MEDLINE | ID: mdl-28366258

ABSTRACT

Almost 45 000 patients with type 1 diabetes are concerned in France by outpatient insulin pump therapy. The first systems of insulin pump therapy guided by glycaemia have evolved driven by the work carried out by multi-disciplinary research teams. Today, the outpatient treatment of type 1 diabetes by an artificial pancreas is on the point of becoming reality.


Subject(s)
Diabetes Mellitus, Type 1/surgery , Pancreas, Artificial , Humans , Therapies, Investigational
9.
J Diabetes Sci Technol ; 11(5): 924-929, 2017 09.
Article in English | MEDLINE | ID: mdl-28303725

ABSTRACT

BACKGROUND: We investigated the long-term effects of continuous subcutaneous insulin infusion (CSII) on glucose control and microvascular complications in patients with type 1 diabetes (T1D). METHODS: A total of 157 patients (59 M/98 W; age 39.1 ± 14.8 years) with T1D who switched from multiple daily injections to CSII and used CSII for at least one year were included. HbA1c levels and status of microvascular complications before and while under CSII were analyzed, retrospectively. RESULTS: The follow-up period was 4.0 ± 1.5 years. HbA1c significantly decreased from 8.4 ± 1.3 to 7.7 ± 1.3% (68 ± 14 to 61 ± 14 mmol/mol) after 1-year CSII and remained lower than pre-CSII levels during four years. Patients with pre-CSII HbA1c >8.0% (64 mmol/mol) showed significant improvement of HbA1c for four years, while those with pre-CSII HbA1c <8.0% showed no significant change. The prevalence of retinopathy, albuminuria, and chronic kidney disease (CKD) were respectively 39%, 12%, and 9% at CSII initiation. During follow-up, the incidence of retinopathy, albuminuria, and CKD were 3.6, 2.5 and 1.4/100 patient-years. Onset or progression of retinopathy occurred in 16 (27.1%) patients with diabetes duration >15 years, and in three (4.3%) patients with diabetes duration <15 years ( P < .01). CONCLUSION: CSII was effective in improving HbA1c for up to four years, specifically in patients with HbA1c >8% (64 mmol/mol) prior to CSII. Incidence and progression rates of retinopathy and albuminuria were low, particularly in patients with a diabetes duration <15 years at CSII initiation. These results argue for not delaying a proposal of CSII initiation in T1D with sustained HbA1c >8% (64 mmol/mol).


Subject(s)
Diabetes Complications/epidemiology , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Adult , Female , Glycated Hemoglobin , Humans , Infusions, Subcutaneous , Insulin Infusion Systems , Male , Middle Aged , Retrospective Studies
10.
Diabetes Care ; 39(7): 1143-50, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27208316

ABSTRACT

OBJECTIVE: To evaluate the efficacy of a portable, wearable, wireless artificial pancreas system (the Diabetes Assistant [DiAs] running the Unified Safety System) on glucose control at home in overnight-only and 24/7 closed-loop control (CLC) modes in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS: At six clinical centers in four countries, 30 participants 18-66 years old with type 1 diabetes (43% female, 96% non-Hispanic white, median type 1 diabetes duration 19 years, median A1C 7.3%) completed the study. The protocol included a 2-week baseline sensor-augmented pump (SAP) period followed by 2 weeks of overnight-only CLC and 2 weeks of 24/7 CLC at home. Glucose control during CLC was compared with the baseline SAP. RESULTS: Glycemic control parameters for overnight-only CLC were improved during the nighttime period compared with baseline for hypoglycemia (time <70 mg/dL, primary end point median 1.1% vs. 3.0%; P < 0.001), time in target (70-180 mg/dL: 75% vs. 61%; P < 0.001), and glucose variability (coefficient of variation: 30% vs. 36%; P < 0.001). Similar improvements for day/night combined were observed with 24/7 CLC compared with baseline: 1.7% vs. 4.1%, P < 0.001; 73% vs. 65%, P < 0.001; and 34% vs. 38%, P < 0.001, respectively. CONCLUSIONS: CLC running on a smartphone (DiAs) in the home environment was safe and effective. Overnight-only CLC reduced hypoglycemia and increased time in range overnight and increased time in range during the day; 24/7 CLC reduced hypoglycemia and increased time in range both overnight and during the day. Compared with overnight-only CLC, 24/7 CLC provided additional hypoglycemia protection during the day.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Pancreas, Artificial , Smartphone , Adolescent , Adult , Aged , Blood Glucose/drug effects , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/methods , Female , Humans , Hypoglycemia/prevention & control , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Internationality , Male , Middle Aged , Mobile Applications , Pancreas, Artificial/adverse effects , Young Adult
11.
Diabetes Care ; 39(7): 1151-60, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27208331

ABSTRACT

OBJECTIVE: After testing of a wearable artificial pancreas (AP) during evening and night (E/N-AP) under free-living conditions in patients with type 1 diabetes (T1D), we investigated AP during day and night (D/N-AP) for 1 month. RESEARCH DESIGN AND METHODS: Twenty adult patients with T1D who completed a previous randomized crossover study comparing 2-month E/N-AP versus 2-month sensor augmented pump (SAP) volunteered for 1-month D/N-AP nonrandomized extension. AP was executed by a model predictive control algorithm run by a modified smartphone wirelessly connected to a continuous glucose monitor (CGM) and insulin pump. CGM data were analyzed by intention-to-treat with percentage time-in-target (3.9-10 mmol/L) over 24 h as the primary end point. RESULTS: Time-in-target (mean ± SD, %) was similar over 24 h with D/N-AP versus E/N-AP: 64.7 ± 7.6 vs. 63.6 ± 9.9 (P = 0.79), and both were higher than with SAP: 59.7 ± 9.6 (P = 0.01 and P = 0.06, respectively). Time below 3.9 mmol/L was similarly and significantly reduced by D/N-AP and E/N-AP versus SAP (both P < 0.001). SD of blood glucose concentration (mmol/L) was lower with D/N-AP versus E/N-AP during whole daytime: 3.2 ± 0.6 vs. 3.4 ± 0.7 (P = 0.003), morning: 2.7 ± 0.5 vs. 3.1 ± 0.5 (P = 0.02), and afternoon: 3.3 ± 0.6 vs. 3.5 ± 0.8 (P = 0.07), and was lower with D/N-AP versus SAP over 24 h: 3.1 ± 0.5 vs. 3.3 ± 0.6 (P = 0.049). Insulin delivery (IU) over 24 h was higher with D/N-AP and SAP than with E/N-AP: 40.6 ± 15.5 and 42.3 ± 15.5 vs. 36.6 ± 11.6 (P = 0.03 and P = 0.0004, respectively). CONCLUSIONS: D/N-AP and E/N-AP both achieved better glucose control than SAP under free-living conditions. Although time in the different glycemic ranges was similar between D/N-AP and E/N-AP, D/N-AP further reduces glucose variability.


Subject(s)
Blood Glucose/analysis , Circadian Rhythm/physiology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Insulin Infusion Systems , Insulin/administration & dosage , Pancreas, Artificial , Adult , Algorithms , Blood Glucose/drug effects , Blood Glucose Self-Monitoring/methods , Cross-Over Studies , Feasibility Studies , Female , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Male , Middle Aged , Social Conditions , Young Adult
12.
J Diabetes Sci Technol ; 9(6): 1170-4, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26424241

ABSTRACT

BACKGROUND: Meal lipids (LIP) and proteins (PRO) may influence the effect of insulin doses based on carbohydrate (CHO) counting in patients with type 1 diabetes (T1D). We developed a smartphone application for CHO, LIP, and PRO counting in daily food and assessed its usability in real-life conditions and potential usefulness. METHODS: Ten T1D patients used the android application for 1 week to collect their food intakes. Data included meal composition, premeal and 2-hour postmeal blood glucose, corrections for hypo- or hyperglycemia after meals, and time for entering meals in the application. Meal insulin doses were based on patients' CHO counting (application in blinded mode). Linear mixed models were used to assess the statistical differences. RESULTS: In all, 187 meals were analyzed. Average computed CHO amount was 74.37 ± 31.78 grams; LIP amount: 20.26 ± 14.28 grams and PRO amount: 25.68 ± 16.68 grams. Average CHO, LIP, and PRO contents were significantly different between breakfast and lunch/dinner. The average time for meal entry in the application moved from 3-4 minutes to 2.5 minutes during the week. No significant impact of LIP and PRO was found on available blood glucose values. CONCLUSION: Our study shows CHO, LIP, and PRO intakes can be easily captured by an application on smartphone for meal entry used by T1D patients. Although LIP and PRO meal contents did not influence glucose levels when insulin doses were based on CHO in this pilot study, this application could be used for further investigation of this topic, including in closed-loop conditions.


Subject(s)
Diabetes Mellitus, Type 1/diet therapy , Diet, Diabetic , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Proteins/administration & dosage , Mobile Applications , Pancreas, Artificial , Smartphone , Adult , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/diagnosis , Equipment Design , Female , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Linear Models , Male , Middle Aged , Pilot Projects , Software Design , Software Validation , Time Factors , Treatment Outcome , Young Adult
13.
Lancet Diabetes Endocrinol ; 3(12): 939-47, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432775

ABSTRACT

BACKGROUND: An artificial pancreas (AP) that can be worn at home from dinner to waking up in the morning might be safe and efficient for first routine use in patients with type 1 diabetes. We assessed the effect on glucose control with use of an AP during the evening and night plus patient-managed sensor-augmented pump therapy (SAP) during the day, versus 24 h use of patient-managed SAP only, in free-living conditions. METHODS: In a crossover study done in medical centres in France, Italy, and the Netherlands, patients aged 18-69 years with type 1 diabetes who used insulin pumps for continuous subcutaneous insulin infusion were randomly assigned to 2 months of AP use from dinner to waking up plus SAP use during the day versus 2 months of SAP use only under free-living conditions. Randomisation was achieved with a computer-generated allocation sequence with random block sizes of two, four, or six, masked to the investigator. Patients and investigators were not masked to the type of intervention. The AP consisted of a continuous glucose monitor (CGM) and insulin pump connected to a modified smartphone with a model predictive control algorithm. The primary endpoint was the percentage of time spent in the target glucose concentration range (3·9-10·0 mmol/L) from 2000 to 0800 h. CGM data for weeks 3-8 of the interventions were analysed on a modified intention-to-treat basis including patients who completed at least 6 weeks of each intervention period. The 2 month study period also allowed us to asses HbA1c as one of the secondary outcomes. This trial is registered with ClinicalTrials.gov, number NCT02153190. FINDINGS: During 2000-0800 h, the mean time spent in the target range was higher with AP than with SAP use: 66·7% versus 58·1% (paired difference 8·6% [95% CI 5·8 to 11·4], p<0·0001), through a reduction in both mean time spent in hyperglycaemia (glucose concentration >10·0 mmol/L; 31·6% vs 38·5%; -6·9% [-9·8% to -3·9], p<0·0001) and in hypoglycaemia (glucose concentration <3·9 mmol/L; 1·7% vs 3·0%; -1·6% [-2·3 to -1·0], p<0·0001). Decrease in mean HbA1c during the AP period was significantly greater than during the control period (-0·3% vs -0·2%; paired difference -0·2 [95% CI -0·4 to -0·0], p=0·047), taking a period effect into account (p=0·0034). No serious adverse events occurred during this study, and none of the mild-to-moderate adverse events was related to the study intervention. INTERPRETATION: Our results support the use of AP at home as a safe and beneficial option for patients with type 1 diabetes. The HbA1c results are encouraging but preliminary. FUNDING: European Commission.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adolescent , Adult , Aged , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Female , Humans , Insulin Infusion Systems , Male , Middle Aged , Monitoring, Physiologic , Smartphone , Time Factors , Treatment Outcome , Young Adult
14.
J Diabetes Sci Technol ; 9(6): 1185-91, 2015 Oct 18.
Article in English | MEDLINE | ID: mdl-26481644

ABSTRACT

BACKGROUND: Physical activity is recommended for patients with type 1 diabetes (T1D). However, without proper management, it can lead to higher risk for hypoglycemia and impaired glycemic control. In this work, we identify the main factors explaining the blood glucose dynamics during exercise in T1D. We then propose a prediction model to quantify the glycemic drop induced by a mild to moderate physical activity. METHODS: A meta-data analysis was conducted over 59 T1D patients from 4 different studies in the United States and France (37 men and 22 women; 47 adults; weight, 71.4 ± 10.6 kg; age, 42 ± 10 years; 12 adolescents: weight, 60.7 ± 12.5 kg; age, 14.0 ± 1.4 years). All participants had physical activity between 3 and 5 pm at a mild to moderate intensity for approximately 30 to 45 min. A multiple linear regression analysis was applied to the data to identify the main parameters explaining the glucose dynamics during such physical activity. RESULTS: The blood glucose at the beginning of exercise ([Formula: see text]), the ratio of insulin on board over total daily insulin ([Formula: see text]) and the age as a categorical variable (1 for adult, 0 for adolescents) were significant factors involved in glucose evolution at exercise (all P < .05). The multiple linear regression model has an R-squared of .6. CONCLUSIONS: The main factors explaining glucose dynamics in the presence of mild-to-moderate exercise in T1D have been identified. The clinical parameters are formally quantified using real data collected during clinical trials. The multiple linear regression model used to predict blood glucose during exercise can be applied in closed-loop control algorithms developed for artificial pancreas.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Exercise , Adolescent , Adult , Algorithms , Biomarkers/blood , Blood Glucose/drug effects , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/physiopathology , Equipment Design , Female , Humans , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Linear Models , Male , Middle Aged , Models, Biological , Pancreas, Artificial , Randomized Controlled Trials as Topic , Time Factors
15.
Diabetes Technol Ther ; 16(10): 613-22, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25003311

ABSTRACT

BACKGROUND: The Control to Range Study was a multinational artificial pancreas study designed to assess the time spent in the hypo- and hyperglycemic ranges in adults and adolescents with type 1 diabetes while under closed-loop control. The controller attempted to keep the glucose ranges between 70 and 180 mg/dL. A set of prespecified metrics was used to measure safety. RESEARCH DESIGN AND METHODS: We studied 53 individuals for approximately 22 h each during clinical research center admissions. Plasma glucose level was measured every 15-30 min (YSI clinical laboratory analyzer instrument [YSI, Inc., Yellow Springs, OH]). During the admission, subjects received three mixed meals (1 g of carbohydrate/kg of body weight; 100 g maximum) with meal announcement and automated insulin dosing by the controller. RESULTS: For adults, the mean of subjects' mean glucose levels was 159 mg/dL, and mean percentage of values 71-180 mg/dL was 66% overall (59% daytime and 82% overnight). For adolescents, the mean of subjects' mean glucose levels was 166 mg/dL, and mean percentage of values in range was 62% overall (53% daytime and 82% overnight). Whereas prespecified criteria for safety were satisfied by both groups, they were met at the individual level in adults only for combined daytime/nighttime and for isolated nighttime. Two adults and six adolescents failed to meet the daytime criterion, largely because of postmeal hyperglycemia, and another adolescent failed to meet the nighttime criterion. CONCLUSIONS: The control-to-range system performed as expected: faring better overnight than during the day and performing with variability between patients even after individualization based on patients' prior settings. The system had difficulty preventing postmeal excursions above target range.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Glycated Hemoglobin/metabolism , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adolescent , Adult , Algorithms , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Dietary Carbohydrates , Female , Humans , Hyperglycemia/blood , Hypoglycemia/blood , Insulin/metabolism , Insulin Secretion , Male , Meals , Monitoring, Physiologic , Patient Safety , Pilot Projects , Postprandial Period , Reproducibility of Results , Time Factors , Treatment Outcome
16.
Diabetes Care ; 37(7): 1789-96, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24929429

ABSTRACT

OBJECTIVE: We estimate the effect size of hypoglycemia risk reduction on closed-loop control (CLC) versus open-loop (OL) sensor-augmented insulin pump therapy in supervised outpatient setting. RESEARCH DESIGN AND METHODS: Twenty patients with type 1 diabetes initiated the study at the Universities of Virginia, Padova, and Montpellier and Sansum Diabetes Research Institute; 18 completed the entire protocol. Each patient participated in two 40-h outpatient sessions, CLC versus OL, in randomized order. Sensor (Dexcom G4) and insulin pump (Tandem t:slim) were connected to Diabetes Assistant (DiAs)-a smartphone artificial pancreas platform. The patient operated the system through the DiAs user interface during both CLC and OL; study personnel supervised on site and monitored DiAs remotely. There were no dietary restrictions; 45-min walks in town and restaurant dinners were included in both CLC and OL; alcohol was permitted. RESULTS: The primary outcome-reduction in risk for hypoglycemia as measured by the low blood glucose (BG) index (LGBI)-resulted in an effect size of 0.64, P = 0.003, with a twofold reduction of hypoglycemia requiring carbohydrate treatment: 1.2 vs. 2.4 episodes/session on CLC versus OL (P = 0.02). This was accompanied by a slight decrease in percentage of time in the target range of 3.9-10 mmol/L (66.1 vs. 70.7%) and increase in mean BG (8.9 vs. 8.4 mmol/L; P = 0.04) on CLC versus OL. CONCLUSIONS: CLC running on a smartphone (DiAs) in outpatient conditions reduced hypoglycemia and hypoglycemia treatments when compared with sensor-augmented pump therapy. This was accompanied by marginal increase in average glycemia resulting from a possible overemphasis on hypoglycemia safety.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adult , Blood Glucose/drug effects , Blood Glucose Self-Monitoring , Cell Phone , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Female , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Insulin/adverse effects , Insulin/therapeutic use , Insulin Infusion Systems , Male , Middle Aged , Outpatients , Pancreas, Artificial/adverse effects , Treatment Outcome
17.
Diabetes Care ; 37(8): 2310-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24879841

ABSTRACT

OBJECTIVE: To determine the safety and efficacy of an automated unified safety system (USS) in providing overnight closed-loop (OCL) control in children and adolescents with type 1 diabetes attending diabetes summer camps. RESEARCH DESIGN AND METHODS: The Diabetes Assistant (DIAS) USS used the Dexcom G4 Platinum glucose sensor (Dexcom) and t:slim insulin pump (Tandem Diabetes Care). An initial inpatient study was completed for 12 participants to evaluate safety. For the main camp study, 20 participants with type 1 diabetes were randomized to either OCL or sensor-augmented therapy (control conditions) per night over the course of a 5- to 6-day diabetes camp. RESULTS: Subjects completed 54 OCL nights and 52 control nights. On an intention-to-treat basis, with glucose data analyzed regardless of system status, the median percent time in range, from 70-150 mg/dL, was 62% (29, 87) for OCL nights versus 55% (25, 80) for sensor-augmented pump therapy (P = 0.233). A per-protocol analysis allowed for assessment of algorithm performance. The median percent time in range, from 70-150 mg/dL, was 73% (50, 89) for OCL nights (n = 41) versus 52% (24, 83) for control conditions (n = 39) (P = 0.037). There was less time spent in the hypoglycemic range <50, <60, and <70 mg/dL during OCL compared with the control period (P = 0.019, P = 0.009, and P = 0.023, respectively). CONCLUSIONS: The DIAS USS algorithm is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting.


Subject(s)
Biosensing Techniques/instrumentation , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Adolescent , Adult , Algorithms , Automation , Blood Glucose/drug effects , Blood Glucose Self-Monitoring/instrumentation , Camping , Child , Circadian Rhythm , Diabetes Mellitus, Type 1/epidemiology , Female , Humans , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Insulin Infusion Systems/adverse effects , Intention to Treat Analysis , Male , Young Adult
18.
J Diabetes Sci Technol ; 8(2): 225-229, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24876571

ABSTRACT

Patients with chronic diseases as well as health care systems could benefit from telemedicine applications such as remote monitoring (RM). RM relies on a device that sends patients' health data to a remote server accessible by care teams. Recent smartphone-based artificial pancreas (AP) systems collect comprehensive set of information and could therefore support the development of RM applied to diabetes. To better understand how RM could be integrated in future AP systems, we wanted to get patients' opinion on this concept, as they are the final users of these systems. An online questionnaire with 11 items was sent to 20 experienced patients who tested AP and RM during our recent outpatient studies in France and Italy. We received 17 answers. All patients considered that during their participation in trials, RM was useful, reassuring, and essential. One-third wouldn't have participated without it. When AP is commercialized, 88% of respondents think that AP should go with a RM tool, but it should be activated only at certain times, at first use or in case of difficulties (82%). Participants ask for technical support when a device fails (88%) and for medical help in case of prolonged hyperglycemia (65%) or severe or repeated hypoglycemia (53%), but not after each case of hypoglycemia (6%). More than 75% think that RM could help them to improve their blood glucose control. This preliminary work indicates that patients expect RM to be part of future AP development. Larger studies remain to be performed to investigate its usefulness and potential economic effectiveness.

19.
Diabetes Technol Ther ; 16(1): 1-7, 2014 01.
Article in English | MEDLINE | ID: mdl-24168317

ABSTRACT

OBJECTIVE: This study tested the feasibility and effectiveness of remote continuous glucose monitoring (CGM) in a diabetes camp setting. SUBJECTS AND METHODS: Twenty campers (7-21 years old) with type 1 diabetes were enrolled at each of three camp sessions lasting 5-6 days. On alternating nights, 10 campers were randomized to usual wear of a Dexcom (San Diego, CA) G4™ PLATINUM CGM system, and 10 were randomized to remote monitoring with the Dexcom G4 PLATINUM communicating with the Diabetes Assistant, a cell phone platform, to allow wireless transmission of CGM values. Up to 15 individual graphs and sensor values could be displayed on a single remote monitor or portable tablet. An alarm was triggered for values <70 mg/dL, and treatment was given for meter-confirmed hypoglycemia. The primary end point was to decrease the duration of hypoglycemic episodes <50 mg/dL. RESULTS: There were 320 nights of CGM data and 197 hypoglycemic events. Of the remote monitoring alarms, 79% were true (meter reading of <70 mg/dL). With remote monitoring, 100% of alarms were responded to, whereas without remote monitoring only 54% of alarms were responded to. The median duration of hypoglycemic events <70 mg/dL was 35 min without remote monitoring and 30 min with remote monitoring (P=0.078). Remote monitoring significantly decreased prolonged hypoglycemic events, eliminating all events <50 mg/dL lasting longer than 30 min as well as all events <70 mg/dL lasting more than 2 h. CONCLUSIONS: Remote monitoring is feasible at diabetes camps and effective in reducing the risk of prolonged nocturnal hypoglycemia. This technology will facilitate forthcoming studies to evaluate the efficacy of automated closed-loop systems in the camp setting.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 1/blood , Hypoglycemia/blood , Monitoring, Ambulatory , Monitoring, Physiologic , Telemedicine , Adolescent , Biosensing Techniques , Blood Glucose Self-Monitoring , Calibration , Camping , Cell Phone , Child , Female , Humans , Hypoglycemia/prevention & control , Male , Monitoring, Ambulatory/methods , Monitoring, Physiologic/methods , Young Adult
20.
J Diabetes Sci Technol ; 7(6): 1427-35, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24351169

ABSTRACT

BACKGROUND: Developments in an artificial pancreas (AP) for patients with type 1 diabetes have allowed a move toward performing outpatient clinical trials. "Home-like" environment implies specific protocol and system adaptations among which the introduction of remote monitoring is meaningful. We present a novel tool allowing multiple patients to monitor AP use in home-like settings. METHODS: We investigated existing systems, performed interviews of experienced clinical teams, listed required features, and drew several mockups of the user interface. The resulting application was tested on the bench before it was used in three outpatient studies representing 3480 h of remote monitoring. RESULTS: Our tool, called DiAs Web Monitoring (DWM), is a web-based application that ensures reception, storage, and display of data sent by AP systems. Continuous glucose monitoring (CGM) and insulin delivery data are presented in a colored chart to facilitate reading and interpretation. Several subjects can be monitored simultaneously on the same screen, and alerts are triggered to help detect events such as hypoglycemia or CGM failures. In the third trial, DWM received approximately 460 data per subject per hour: 77% for log messages, 5% for CGM data. More than 97% of transmissions were achieved in less than 5 min. CONCLUSIONS: Transition from a hospital setting to home-like conditions requires specific AP supervision to which remote monitoring systems can contribute valuably. DiAs Web Monitoring worked properly when tested in our outpatient studies. It could facilitate subject monitoring and even accelerate medical and technical assessment of the AP. It should now be adapted for long-term studies with an enhanced notification feature.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Monitoring, Physiologic/instrumentation , Outpatients , Pancreas, Artificial , Remote Sensing Technology/instrumentation , Blood Glucose/metabolism , Cell Phone , Clinical Trials as Topic , Diabetes Mellitus, Type 1/blood , Equipment Design , Humans , Insulin/administration & dosage , Insulin/therapeutic use , Microcomputers , Monitoring, Physiologic/methods , Remote Sensing Technology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...