Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pulm Pharmacol Ther ; 34: 37-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26271598

ABSTRACT

Neutrophil infiltration and activation in the lung are important pathophysiological features in COPD, severe asthma and bronchiectasis mostly mediated by CXCL8 and CXCL1 via CXCR1 and CXCR2. No thorough study to date has been performed to compare the anti-inflammatory effect profile of dual CXCR1/2 vs. selective CXCR2 antagonists in relevant human neutrophil assays and pulmonary inflammation models. Dual CXCR1/2 (SCH527123, diaminocyclobutandione-1) and selective CXCR2 (SB265610, thiopyrimidine-1) antagonist activity and receptor residence time were determined by [(35)S]GTPγS binding in human (h)- and guinea pig (gp)-CXCR1 and CXCR2 overexpressing membranes. h-neutrophil chemotaxis, degranulation and ROS production were established using CXCL8 or CXCL1 to evaluate dual CXCR1/2- or selective CXCR2-dependent activities. LPS-induced lung inflammation in gp was selected to assess in vivo potency. Dual CXCR1/2 antagonists blocked both CXCL8 and CXCL1-induced h-neutrophil functions and [(35)S]GTPγS binding. In contrary, selective CXCR2 antagonists displayed significantly reduced potency in CXCL8 -mediated h-neutrophil responses despite being active in CXCR2 assays. Upon LPS challenge in gp, administration of SCH527123 inhibited the increase of neutrophils in BALF, modestly reduced blood neutrophils and induced minor neutrophil accumulation in bone marrow. Differentiation of CXCR1/2 vs. CXCR2 antagonists could not be extended to in vivo due to differences in CXCR1 receptor homology between h and gp. Dual CXCR1/2 therapy may represent a promising anti-inflammatory treatment for respiratory diseases reducing more effectively neutrophil migration and activation in the lung than a CXCR2 selective treatment. However, the in vivo confirmation of this claim is still missing due to species differences in CXCR1.


Subject(s)
Benzamides/pharmacology , Cyclobutanes/pharmacology , Neutrophils/metabolism , Phenylurea Compounds/pharmacology , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Triazoles/pharmacology , Animals , Cell Line , Cricetinae , Guinea Pigs , Humans , Inflammation/immunology , Interleukin-8/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Male , Reactive Oxygen Species/immunology , Signal Transduction
2.
Clin Exp Immunol ; 173(2): 298-309, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23607720

ABSTRACT

Neutrophil recruitment and survival are important control points in the development and resolution of inflammatory processes. 15-epi-lipoxin (LX)A interaction with formyl peptide receptor 2 (FPR2)/ALX receptor is suggested to enhance anti-inflammatory neutrophil functions and mediate resolution of airway inflammation. However, it has been reported that 15-epi-LXA4 analogues can also bind to cysteinyl leukotriene receptor 1 (CysLT1) and that the CysLT1 antagonist MK-571 binds to FPR2/ALX, so cross-reactivity between FPR2/ALX and CysLT1 ligands cannot be discarded. It is not well established whether the resolution properties reported for 15-epi-LXA4 are mediated through FPR2/ALX, or if other receptors such as CysLT1 may also be involved. Evaluation of specific FPR2/ALX ligands and CysLT1 antagonists in functional biochemical and cellular assays were performed to establish a role for both receptors in 15-epi-LXA4-mediated signalling and function. In our study, a FPR2/ALX synthetic peptide (WKYMVm) and a small molecule FPR2/ALX agonist (compound 43) induced FPR2/ALX-mediated signalling, enhancing guanosine triphosphate-gamma (GTPγ) binding and decreasing cyclic adenosine monophosphate (cAMP) levels, whereas 15-epi-LXA4 was inactive. Furthermore, 15-epi-LXA4 showed neither binding affinity nor signalling towards CysLT1. In neutrophils, 15-epi-LXA4 showed a moderate reduction of interleukin (IL)-8-mediated neutrophil chemotaxis but no effect on neutrophil survival was observed. In addition, CysLT1 antagonists were inactive in FPR2/ALX signalling or neutrophil assays. In conclusion, 15-epi-LXA4 is not a functional agonist or an antagonist of FPR2/ALX or CysLT1, shows no effect on IL-8-induced neutrophil survival and produces only moderate inhibition in IL-8-mediated neutrophil migration. Our data do not support an anti-inflammatory role of 15-epi-LXA4- FPR2/ALX interaction in IL-8-induced neutrophil inflammation.


Subject(s)
Lipoxins/pharmacology , Neutrophil Activation , Neutrophils/drug effects , Receptors, Formyl Peptide/agonists , Receptors, Leukotriene/metabolism , Receptors, Lipoxin/agonists , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Cyclic AMP/metabolism , Humans , Interleukin-8/immunology , Neutrophil Activation/drug effects , Neutrophils/immunology , Protein Binding/drug effects , Signal Transduction/drug effects
3.
Mucosal Immunol ; 3(3): 270-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20130564

ABSTRACT

The widespread use of statins for hypercholesterolemia has uncovered pleiotropic anti-inflammatory properties that were unexpected based on the drugs' original design; yet, mechanisms for these protective actions remain uncertain. In this study lovastatin triggered biosynthesis of the anti-inflammatory and pro-resolving mediator 15-epi-lipoxin A(4) (15-epi-LXA(4)). During interactions between human neutrophils and airway epithelial cells, the statin-induced increase in 15-epi-LXA(4) was associated with increased 14,15-epoxyeicosatrienoic acid (14,15-EET) generation. When added to activated neutrophils, 14,15-EET enhanced 15-epi-LXA(4) biosynthesis. In a murine model of airway mucosal injury and inflammation, lovastatin increased 15-epi-LXA(4) formation in vivo and markedly decreased acute lung inflammation. Administration of 15-epi-LXA(4) also inhibited lung inflammation in an additive manner with lovastatin. Together, these results indicate that statin-triggered 15-epi-LXA(4) generation during human leukocyte-airway epithelial cell interactions is an endogenous mechanism for statin-mediated tissue protection at mucosal surfaces that may also be relevant in the statins' ability to stimulate the resolution of inflammation.


Subject(s)
Anticholesteremic Agents/pharmacology , Inflammation Mediators/immunology , Lipoxins/immunology , Lovastatin/pharmacology , Pneumonia/immunology , Respiratory Mucosa/immunology , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/immunology , 8,11,14-Eicosatrienoic Acid/metabolism , Acute Disease , Animals , Cell Line , Disease Models, Animal , Female , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/immunology , Hypercholesterolemia/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism , Lipoxins/metabolism , Male , Mice , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/drug therapy , Pneumonia/metabolism , Respiratory Mucosa/metabolism
4.
Article in English | MEDLINE | ID: mdl-16006110

ABSTRACT

Eicosanoids play a key role in the initiation, progression and resolution of the inflammatory response. Although most current anti-inflammatory strategies are focused on the pharmacological inhibition of pro-inflammatory eicosanoids, such as prostaglandins and leukotrienes, mounting evidence indicates the existence of potent endogenous eicosanoids able to control inflammation and orchestrate its resolution. The first eicosanoids recognized as anti-inflammatory compounds generated by our own organism were the lipoxins (LXs). More recently, a new series of carbon-15 epimers of LXs, with anti-inflammatory properties similar to those of native LXs, was identified during aspirin treatment. Since their formation is specific to this venerable non-steroidal anti-inflammatory drug, the term aspirin-triggered LXs (ATLs) was coined for these compounds. This chapter deals with the biosynthesis of LXs and ATLs in the liver, the largest solid organ/gland in the body, and discusses the most relevant actions of these lipid mediators in the context of liver inflammation and injury.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aspirin/pharmacology , Lipoxins/physiology , Liver/metabolism , Animals , Lipoxins/biosynthesis , Liver/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...