Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Spray Technol ; 31(1-2): 46-58, 2022.
Article in English | MEDLINE | ID: mdl-37520911

ABSTRACT

In thermal spray process, the characteristics of in-flight particles (velocity and temperature) play an important role regarding the microstructure of the deposit and thus the coating performances. The implementation of diagnostic devices is necessary to measure such characteristics. Many imaging systems and algorithms have been developed for identifying and tracking in-flight particles. However, these current image systems have significant limitations in terms of accuracy for example. One key to solving the tracking problem is to get an algorithm that can effectively distinguish different particles in the same image frame at the same time. This study aims to develop an algorithm capable of identifying a large number of in-flight particles sprayed by thermal process. The results show that the noise and vignettes could be successfully treated, particles are clearly recognized in the background, leading to properly measuring the sizes and positions of the particle versus time. The proposed algorithm has a higher recognition rate and recognition range than other algorithms, which will provide a reasonable basis for subsequent calculation and processing.

2.
Ultrason Sonochem ; 52: 336-343, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30573433

ABSTRACT

Hydraulic components are coated by thermal spraying to protect them against cavitation erosion. These coatings are built up by successive deposition of single splats. The behavior of a single splat under mechanical loading is still very vaguely understood. Yttria-stabilized zirconia (YSZ) and stainless-steel splats were obtained by plasma spraying onto stainless steel substrates. The velocity and temperature of particles upon impact were measured and the samples were subsequently exposed to cavitation erosion tests. An acoustic cavitation simulation estimated the water jet velocity and hammer stresses exerted by bubble collapse on the surface of the specimen. Although the results suggested that high stress levels resulted from cavitation loading, it was clear that weak adhesion interfaces played a crucial role in the accelerated cavitation-induced degradation.

SELECTION OF CITATIONS
SEARCH DETAIL