Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Science ; 369(6510): 1497-1500, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32943524

ABSTRACT

Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.

2.
J Geophys Res Planets ; 123(3): 695-707, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29780678

ABSTRACT

Recent measurements by the Imaging Ultraviolet Spectrograph (IUVS) instrument on NASA's Mars Atmosphere and Volatile EvolutioN mission show that a persistent layer of Mg+ ions occurs around 90 km in the Martian atmosphere but that neutral Mg atoms are not detectable. These observations can be satisfactorily modeled with a global meteoric ablation rate of 0.06 t sol-1, out of a cosmic dust input of 2.7 ± 1.6 t sol-1. The absence of detectable Mg at 90 km requires that at least 50% of the ablating Mg atoms ionize through hyperthermal collisions with CO2 molecules. Dissociative recombination of MgO+.(CO2)n cluster ions with electrons to produce MgCO3 directly, rather than MgO, also avoids a buildup of Mg to detectable levels. The meteoric injection rate of Mg, Fe, and other metals-constrained by the IUVS measurements-enables the production rate of metal carbonate molecules (principally MgCO3 and FeCO3) to be determined. These molecules have very large electric dipole moments (11.6 and 9.2 Debye, respectively) and thus form clusters with up to six H2O molecules at temperatures below 150 K. These clusters should then coagulate efficiently, building up metal carbonate-rich ice particles which can act as nucleating particles for the formation of CO2-ice clouds. Observable mesospheric clouds are predicted to occur between 65 and 80 km at temperatures below 95 K and above 85 km at temperatures about 5 K colder.

3.
Phys Chem Chem Phys ; 20(12): 8349-8354, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29492495

ABSTRACT

The article "Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature" proposes a dimer mediated mechanism in order to explain the large low temperature rate coefficients for the OH + methanol reaction measured by several groups. It is demonstrated here theoretically that under the conditions of these low temperature experiments, there are insufficient dimers formed for the proposed new mechanism to apply. Experimental evidence is also presented to show that dimerization of the methanol reagent does not influence the rate coefficients reported under the conditions of methanol concentration used for the kinetics studies. It is also emphasised that the low temperature experiments have been performed using both the Laval nozzle expansion and flow-tube methods, with good agreement found for the rate coefficients measured using these two distinct techniques.

4.
J Phys Chem A ; 121(40): 7667-7674, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28902518

ABSTRACT

We report the first direct kinetic study of the gas-phase reaction NaOH + H → Na + H2O, which is central to the chemistry of sodium in the upper atmosphere and in flames. The reaction was studied in a fast flow tube, where NaOH was observed by multiphoton ionization and time-of-flight mass spectrometry, yielding k(NaOH + H, 230-298 K) = (3.8 ± 0.8) × 10-11 cm3 molecule -1 s-1 (at 2σ confidence level), showing no significant temperature dependence over the indicated temperature range and essentially in agreement with previous estimates of the rate constant in hydrogen-rich flames. We show, using theoretical trajectory calculations, that the unexpectedly slow, yet T-independent, rate coefficient for NaOH + H is explained by severe constraints in the angle of attack that H can make on NaOH to produce H2O. This reaction is also central to explaining Na-catalyzed flame inhibition, which has been proposed to occur via the sequence Na + OH (+ M) → NaOH followed by NaOH + H → Na + H2O, thereby effectively recombinating H and OH to H2O. RRKM calculations for the recombination of Na and OH yield k(Na + OH + N2, 300-2400 K) = 2.7 × 10-29 (300/T)1.2 cm6 molecule-2 s-1, in agreement with a previous flash photolysis measurement at 653 K and Na-seeded flame studies in the 1800-2200 K range. These results therefore provide strong evidence to support the mechanism of flame inhibition by Na.

5.
Rev Sci Instrum ; 87(9): 094504, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782588

ABSTRACT

On entering the Earth's atmosphere, micrometeoroids partially or completely ablate, leaving behind layers of metallic atoms and ions. The relative concentration of the various metal layers is not well explained by current models of ablation. Furthermore, estimates of the total flux of cosmic dust and meteoroids entering the Earth's atmosphere vary over two orders of magnitude. To better constrain these estimates and to better model the metal layers in the mesosphere, an experimental Meteoric Ablation Simulator (MASI) has been developed. Interplanetary Dust Particle (IDP) analogs are subjected to temperature profiles simulating realistic entry heating, to ascertain the differential ablation of relevant metal species. MASI is the first ablation experiment capable of simulating detailed mass, velocity, and entry angle-specific temperature profiles whilst simultaneously tracking the resulting gas-phase ablation products in a time resolved manner. This enables the determination of elemental atmospheric entry yields which consider the mass and size distribution of IDPs. The instrument has also enabled the first direct measurements of differential ablation in a laboratory setting.

6.
J Phys Chem A ; 120(9): 1330-46, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-25723735

ABSTRACT

The gas-phase reactions of a selection of sodium-containing species with atmospheric constituents, relevant to the chemistry of meteor-ablated Na in the upper atmosphere, were studied in a fast flow tube using multiphoton ionization time-of-flight mass spectrometry. For the first time, unambiguous observations of NaO and NaOH in the gas phase under atmospheric conditions have been achieved. This enabled the direct measurement of the rate constants for the reactions of NaO with H2, H2O, and CO, and of NaOH with CO2, which at 300-310 K were found to be (at 2σ confidence level): k(NaO + H2O) = (2.4 ± 0.6) × 10(-10) cm(3) molecule (-1) s(-1), k(NaO + H2) = (4.9 ± 1.2) × 10(-12) cm(3) molecule (-1) s(-1), k(NaO + CO) = (9 ± 4) × 10(-11) cm(3) molecule (-1) s(-1), and k(NaOH + CO2 + M) = (7.6 ± 1.6) × 10(-29) cm(6) molecule (-2) s(-1) (P = 1-4 Torr). The NaO + H2 reaction was found to make NaOH with a branching ratio ≥ 99%. A combination of quantum chemistry and statistical rate theory calculations are used to interpret the reaction kinetics and extrapolate the atmospherically relevant experimental results to mesospheric temperatures and pressures. The NaO + H2O and NaOH + CO2 reactions act sequentially to provide the major atmospheric sink of meteoric Na and therefore have a significant impact on the underside of the Na layer in the terrestrial mesosphere: the newly determined rate constants shift the modeled peak to about 93 km, i.e., 2 km higher than observed by ground-based lidars. This highlights further uncertainties in the Na chemistry cycle such as the unknown rate constant of the NaOH + H reaction. The fast Na-recycling reaction between NaO and CO and a re-evaluated rate constant of the NaO + CO2 sink should be now considered in chemical models of the Martian Na layer.

7.
J Phys Chem A ; 120(9): 1369-76, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26154158

ABSTRACT

The dissociative recombination (DR) of FeO(+) ions with electrons has been studied in a flowing afterglow reactor. FeO(+) was generated by the pulsed laser ablation of a solid Fe target, and then entrained in an Ar(+) ion/electron plasma where the absolute electron density was measured using a Langmuir probe. A kinetic model describing gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a DR rate coefficient at 298 K of k(FeO(+) + e(-)) = (5.5 ± 1.0) × 10(-7) cm(3) molecule(-1) s(-1), where the quoted uncertainty is at the 2σ level. Fe(+) ions in the lower thermosphere are oxidized by O3 to FeO(+), and this DR reaction is shown to provide a more important route for neutralizing Fe(+) below 110 km than the radiative/dielectronic recombination of Fe(+) with electrons. The experimental system was first validated by measuring two other DR reaction rate coefficients: k(O2(+) + e(-)) = (2.0 ± 0.4) × 10(-7) and k(N2O(+) + e(-)) = (3.3 ± 0.8) × 10(-7) cm(3) molecule(-1) s(-1), which are in good agreement with the recent literature.

8.
Geophys Res Lett ; 43(24): 12333-12339, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28239205

ABSTRACT

The dissociative recombination of CaO+ ions with electrons has been studied in a flowing afterglow reactor. CaO+ was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar+ ion/electron plasma. A kinetic model describing the gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10-7 cm3 molecule-1 s-1 at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca+/Fe+ ratio is ~8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion-molecule chemistry of these two metals. Second, the rate of neutralization of Ca+ ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers.

9.
Geophys Res Lett ; 43(23): 11979-11986, 2016 12 16.
Article in English | MEDLINE | ID: mdl-28275286

ABSTRACT

There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

10.
J Geophys Res Space Phys ; 121(7): 7153-7165, 2016 Jul.
Article in English | MEDLINE | ID: mdl-31404353

ABSTRACT

The meteoric metal layers (Na, Fe, and K)-which form as a result of the ablation of incoming meteors-act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere region. In this work, we examine whether these metal layers are sensitive indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer timescales (both the ~11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.

11.
Geophys Res Lett ; 42(15): 6518-6525, 2015 Aug 16.
Article in English | MEDLINE | ID: mdl-27478282

ABSTRACT

The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s-1) particles.

12.
Geophys Res Lett ; 42(9): 3619-3626, 2015 05 16.
Article in English | MEDLINE | ID: mdl-27478284

ABSTRACT

Measurements of the diurnal cycle of potassium (K) atoms between 80 and 110 km have been made during October (for the years 2004-2011) using a Doppler lidar at Kühlungsborn, Germany (54.1°N, 11.7°E). A pronounced diurnal variation is observed in the K number density, which is explored by using a detailed description of the neutral and ionized chemistry of K in a three-dimensional chemistry climate model. The model captures both the amplitude and phase of the diurnal and semidiurnal variability of the layer, although the peak diurnal amplitude around 90 km is overestimated. The model shows that the total potassium density (≈ K + K+ + KHCO3) exhibits little diurnal variation at each altitude, and the diurnal variations are largely driven by photochemical conversion between these reservoir species. In contrast, tidally driven vertical transport has a small effect at this midlatitude location, and diurnal fluctuations in temperature are of little significance because they are small and the chemistry of K is relatively temperature independent.

13.
J Geophys Res Atmos ; 120(15): 7975-7987, 2015 08 16.
Article in English | MEDLINE | ID: mdl-27478716

ABSTRACT

The meteoric metal layers act as unique tracers of chemistry and dynamics in the upper atmosphere. Existing lidar studies from a few locations show that K exhibits a semiannual seasonality (winter and summer maxima), quite unlike the annual seasonality (winter maximum and summer minimum) seen with Na and Fe. This work uses spaceborne observations made with the Optical Spectrograph and InfraRed Imager System instrument on the Odin satellite to retrieve the near-global K layer for the first time. The satellite data (2004 to mid-2013) are used to validate the implementation of a recently proposed potassium chemistry scheme in a whole atmosphere chemistry climate model, which provides a chemical basis for this semiannual seasonal behavior. The satellite and model data show that this semiannual seasonality is near global in extent, with the strongest variation at middle and high latitudes. The column abundance, centroid layer height, and root-mean-square width of the K layer are consistent with the limited available lidar record. The K data set is then used to investigate the impact of polar mesospheric clouds on the metal layers at high latitudes during summer. Finally, the occurrence frequency of sporadic K layers and their possible link to sporadic E layers are examined.

14.
J Phys Chem A ; 118(15): 2693-701, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24669816

ABSTRACT

The rate constant of the reaction between methanol and the hydroxyl radical has been studied in the temperature range 56-202 K by pulsed laser photolysis-laser induced fluorescence in two separate experiments using either a low temperature flow tube coupled to a time-of-flight mass spectrometer or a pulsed Laval nozzle apparatus. The two independent techniques yield rate constants that are in mutual agreement and consistent with the results reported previously below 82 K [Shannon et al. Nat. Chem. 2013, 5, 745-749] and above 210 K [Dillon et al. Phys. Chem. Chem. Phys. 2005, 7, 349-355], showing a very sharp increase with decreasing temperature with an onset around 180 K. This onset is also signaled by strong chemiluminescence tentatively assigned to formaldehyde, which is consistent with the formation of the methoxy radical at low temperature by quantum tunnelling, and its subsequent reaction with H and OH. Our results add confidence to the previous low temperature rate constant measurements and consolidate the experimental reference data set for further theoretical work required to describe quantitatively the tunnelling mechanism operating in this reaction. An additional measurement of the rate constant at 56 K yielded a value of (4.9 ± 0.8) × 10(-11) cm(3) molecule(-1) s(-1) (2σ), showing that the rate constant is increasing less rapidly at temperatures below 70 K.

15.
Astrophys J ; 796(1)2014 Nov 20.
Article in English | MEDLINE | ID: mdl-27642186

ABSTRACT

Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorný et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (~16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

16.
Phys Chem Chem Phys ; 15(37): 15612-22, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23942624

ABSTRACT

The formation of atmospherically relevant iodine oxides IxOy (x = 1,…,3, y = 1,…,7) has been studied experimentally using time-of-flight mass spectrometry combined with a soft ionisation source, complemented with ab initio electronic structure calculations of ionisation potentials and bond energies at a high level of theory presented in detail in the accompanying paper (Galvez et al., 2013). For the first time, direct experimental evidence of the I2Oy (y = 1,…,5) molecules in the gas phase has been obtained. These chemical species are observed alongside their precursors (IO and OIO) in experiments where large amounts of aerosol are also generated. The measured relative concentrations of the IxOy molecules and their dependence on ozone concentration have been investigated by using chemical modelling and rate theory calculations. It is concluded that I2O4 is the most plausible candidate to initiate nucleation, while the contribution of I2O5 in the initial steps is likely to be marginal. The absence of large I3Oy (y = 3,…,6) peaks in the mass spectra and the high stability of the I2O4-I2O4 dimer indicate that dimerisation of I2O4 is the key step in iodine oxide particle nucleation.

17.
J Chem Phys ; 137(1): 014310, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22779651

ABSTRACT

The first excited electronic state of molecular oxygen, O(2)(a(1)Δ(g)), is formed in the upper atmosphere by the photolysis of O(3). Its lifetime is over 70 min above 75 km, so that during the day its concentration is about 30 times greater than that of O(3). In order to explore its potential reactivity with atmospheric constituents produced by meteoric ablation, the reactions of Mg, Fe, and Ca with O(2)(a) were studied in a fast flow tube, where the metal atoms were produced either by thermal evaporation (Ca and Mg) or by pulsed laser ablation of a metal target (Fe), and detected by laser induced fluorescence spectroscopy. O(2)(a) was produced by bubbling a flow of Cl(2) through chilled alkaline H(2)O(2), and its absolute concentration determined from its optical emission at 1270 nm (O(2)(a(1)Δ(g) - X(3)Σ(g) (-)). The following results were obtained at 296 K: k(Mg + O(2)(a) + N(2) → MgO(2) + N(2)) = (1.8 ± 0.2) × 10(-30) cm(6) molecule(-2) s(-1); k(Fe + O(2)(a) → FeO + O) = (1.1 ± 0.1) × 10(-13) cm(3) molecule(-1) s(-1); k(Ca + O(2)(a) + N(2) → CaO(2) + N(2)) = (2.9 ± 0.2) × 10(-28) cm(6) molecule(-2) s(-1); and k(Ca + O(2)(a) → CaO + O) = (2.7 ± 1.0) × 10(-12) cm(3) molecule(-1) s(-1). The total uncertainty in these rate coefficients, which mostly arises from the systematic uncertainty in the O(2)(a) concentration, is estimated to be ±40%. Mg + O(2)(a) occurs exclusively by association on the singlet surface, producing MgO(2)((1)A(1)), with a pressure dependent rate coefficient. Fe + O(2)(a), on the other hand, shows pressure independent kinetics. FeO + O is produced with a probability of only ∼0.1%. There is no evidence for an association complex, suggesting that this reaction proceeds mostly by near-resonant electronic energy transfer to Fe(a(5)F) + O(2)(X). The reaction of Ca + O(2)(a) occurs in an intermediate regime with two competing pressure dependent channels: (1) a recombination to produce CaO(2)((1)A(1)), and (2) a singlet∕triplet non-adiabatic hopping channel leading to CaO + O((3)P). In order to interpret the Ca + O(2)(a) results, we utilized density functional theory along with multireference and explicitly correlated CCSD(T)-F12 electronic structure calculations to examine the lowest lying singlet and triplet surfaces. In addition to mapping stationary points, we used a genetic algorithm to locate minimum energy crossing points between the two surfaces. Simulations of the Ca + O(2)(a) kinetics were then carried out using a combination of both standard and non-adiabatic Rice-Ramsperger-Kassel-Marcus (RRKM) theory implemented within a weak collision, multiwell master equation model. In terms of atmospheric significance, only in the case of Ca does reaction with O(2)(a) compete with O(3) during the daytime between 85 and 110 km.

18.
Phys Chem Chem Phys ; 9(41): 5599-607, 2007 Nov 07.
Article in English | MEDLINE | ID: mdl-17957317

ABSTRACT

The absolute absorption cross section of IONO(2) was measured by the pulsed photolysis at 193 nm of a NO(2)/CF(3)I mixture, followed by time-resolved Fourier transform spectroscopy in the near-UV. The resulting cross section at a temperature of 296 K over the wavelength range from 240 to 370 nm is given by log(10)(sigma(IONO(2))/cm(2) molecule(-1)) = 170.4 - 3.773 lambda + 2.965 x 10(-2)lambda(2)- 1.139 x 10(-4)lambda(3) + 2.144 x 10(-7)lambda(4)- 1.587 x 10(-10)lambda(5), where lambda is in nm; the cross section, with 2sigma uncertainty, ranges from (6.5 +/- 1.9) x 10(-18) cm(2) at 240 nm to (5 +/- 3) x 10(-19) cm(2) at 350 nm, and is significantly lower than a previous measurement [J. C. Mössinger, D. M. Rowley and R. A. Cox, Atmos. Chem. Phys., 2002, 2, 227]. The photolysis quantum yields for IO and NO(3) production at 248 nm were measured using laser induced fluorescence of IO at 445 nm, and cavity ring-down spectroscopy of NO(3) at 662 nm, yielding phi(IO)

Subject(s)
Algorithms , Iodine/chemistry , Nitrates/chemistry , Ozone/chemistry , Spectrophotometry/methods , Absorption/radiation effects , Atmosphere/chemistry , Iodine/radiation effects , Models, Chemical , Photochemistry , Photolysis/radiation effects , Quantum Theory , Temperature
19.
Phys Chem Chem Phys ; 8(15): 1812-21, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16633666

ABSTRACT

These gas-phase reactions were studied by pulsed laser ablation of an iron target to produce Fe(+) in a fast flow tube, with detection of the ions by quadrupole mass spectrometry. Fe(+).N(2) and Fe(+).O(2) were produced by injecting N(2) and O(2), respectively, into the flow tube. FeO(+) was produced from Fe(+) by addition of N(2)O, or by ligand-switching from Fe(+).N(2) following the addition of atomic O. The following rate coefficients were measured: k(FeO(+) + O --> Fe(+) + O(2), 186-294 K) = (3.2 +/- 1.5) x 10(-11); k(Fe(+).N(2) + O --> FeO(+)+ N(2), 294 K) = (4.6 +/- 2.5) x 10(-10); k(Fe(+).O(2) + O --> FeO(+) + O(2), 294 K) = (6.3 +/- 2.7) x 10(-11); and k(FeO(+) + CO --> Fe(+) + CO(2), 294 K) = (1.59 +/- 0.34) x 10(-10) cm(3) molecule(-1) s(-1), where the quoted uncertainties are a combination of the 1sigma standard errors in the kinetic data and the systematic experimental errors. The surprisingly slow reaction between FeO(+) and O is examined using ab initio quantum calculations of the relevant potential energy surfaces. The importance of this reaction for controlling the lifetime of sporadic E layers is then demonstrated using a model of the upper mesosphere and lower thermosphere.


Subject(s)
Atmosphere/chemistry , Carbon Monoxide/chemistry , Ferric Compounds/chemistry , Iron/chemistry , Models, Chemical , Nitrogen/chemistry , Oxygen/chemistry , Electrons , Ions , Kinetics
20.
Phys Chem Chem Phys ; 8(4): 503-12, 2006 Jan 28.
Article in English | MEDLINE | ID: mdl-16482293

ABSTRACT

A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.


Subject(s)
Carbon Dioxide/chemistry , Iron/chemistry , Nitrogen/chemistry , Nitrous Oxide/chemistry , Oxygen/chemistry , Water/chemistry , Carbon Dioxide/metabolism , Computer Simulation , Iron/metabolism , Kinetics , Ligands , Nitrogen/metabolism , Nitrous Oxide/metabolism , Oxygen/metabolism , Quantum Theory , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...