Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6732, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872146

ABSTRACT

Myosin VI (Myo6) is the only minus-end directed nanomotor on actin, allowing it to uniquely contribute to numerous cellular functions. As for other nanomotors, the proper functioning of Myo6 relies on precise spatiotemporal control of motor activity via a poorly defined off-state and interactions with partners. Our structural, functional, and cellular studies reveal key features of myosin regulation and indicate that not all partners can activate Myo6. TOM1 and Dab2 cannot bind the off-state, while GIPC1 binds Myo6, releases its auto-inhibition and triggers proximal dimerization. Myo6 partners thus differentially recruit Myo6. We solved a crystal structure of the proximal dimerization domain, and show that its disruption compromises endocytosis in HeLa cells, emphasizing the importance of Myo6 dimerization. Finally, we show that the L926Q deafness mutation disrupts Myo6 auto-inhibition and indirectly impairs proximal dimerization. Our study thus demonstrates the importance of partners in the control of Myo6 auto-inhibition, localization, and activation.


Subject(s)
Actins , Myosin Heavy Chains , Humans , HeLa Cells , Dimerization , Actins/metabolism , Myosin Heavy Chains/metabolism
2.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37172566

ABSTRACT

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Multiprotein Complexes , Humans , Endosomes/metabolism , Protein Transport , Proteins/metabolism , Multiprotein Complexes/metabolism
3.
Development ; 150(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36897564

ABSTRACT

During morphogenesis, large-scale changes of tissue primordia are coordinated across an embryo. In Drosophila, several tissue primordia and embryonic regions are bordered or encircled by supracellular actomyosin cables, junctional actomyosin enrichments networked between many neighbouring cells. We show that the single Drosophila Alp/Enigma-family protein Zasp52, which is most prominently found in Z-discs of muscles, is a component of many supracellular actomyosin structures during embryogenesis, including the ventral midline and the boundary of the salivary gland placode. We reveal that Zasp52 contains within its central coiled-coil region a type of actin-binding motif usually found in CapZbeta proteins, and this domain displays actin-binding activity. Using endogenously-tagged lines, we identify that Zasp52 interacts with junctional components, including APC2, Polychaetoid and Sidekick, and actomyosin regulators. Analysis of zasp52 mutant embryos reveals that the severity of the embryonic defects observed scales inversely with the amount of functional protein left. Large tissue deformations occur where actomyosin cables are found during embryogenesis, and in vivo and in silico analyses suggest a model whereby supracellular Zasp52-containing cables aid to insulate morphogenetic changes from one another.


Subject(s)
Actomyosin , Drosophila Proteins , Animals , Actomyosin/metabolism , Actins/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Sarcomeres/metabolism , Morphogenesis/genetics
4.
EMBO J ; 40(12): e107608, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34018214

ABSTRACT

The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo-EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII-specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease-causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur-TRAPP.


Subject(s)
Drosophila Proteins/chemistry , Vesicular Transport Proteins/chemistry , rab1 GTP-Binding Proteins/chemistry , Cryoelectron Microscopy , Drosophila Proteins/ultrastructure , Guanine Nucleotide Exchange Factors/chemistry , Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , Protein Conformation , Vesicular Transport Proteins/ultrastructure , rab1 GTP-Binding Proteins/ultrastructure
5.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808390

ABSTRACT

When combined with NMR spectroscopy, high hydrostatic pressure is an alternative perturbation method used to destabilize globular proteins that has proven to be particularly well suited for exploring the unfolding energy landscape of small single-domain proteins. To date, investigations of the unfolding landscape of all-ß or mixed-α/ß protein scaffolds are well documented, whereas such data are lacking for all-α protein domains. Here we report the NMR study of the unfolding pathways of GIPC1-GH2, a small α-helical bundle domain made of four antiparallel α-helices. High-pressure perturbation was combined with NMR spectroscopy to unravel the unfolding landscape at three different temperatures. The results were compared to those obtained from classical chemical denaturation. Whatever the perturbation used, the loss of secondary and tertiary contacts within the protein scaffold is almost simultaneous. The unfolding transition appeared very cooperative when using high pressure at high temperature, as was the case for chemical denaturation, whereas it was found more progressive at low temperature, suggesting the existence of a complex folding pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Magnetic Resonance Spectroscopy/methods , Protein Unfolding/drug effects , Humans , Kinetics , Models, Molecular , Protein Conformation/drug effects , Protein Conformation, alpha-Helical/physiology , Protein Denaturation , Protein Domains , Temperature , Thermodynamics
6.
Nat Commun ; 8(1): 190, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28775348

ABSTRACT

Omecamtiv mecarbil is a selective, small-molecule activator of cardiac myosin that is being developed as a potential treatment for heart failure with reduced ejection fraction. Here we determine the crystal structure of cardiac myosin in the pre-powerstroke state, the most relevant state suggested by kinetic studies, both with (2.45 Å) and without (3.10 Å) omecamtiv mecarbil bound. Omecamtiv mecarbil does not change the motor mechanism nor does it influence myosin structure. Instead, omecamtiv mecarbil binds to an allosteric site that stabilizes the lever arm in a primed position resulting in accumulation of cardiac myosin in the primed state prior to onset of cardiac contraction, thus increasing the number of heads that can bind to the actin filament and undergo a powerstroke once the cardiac cycle starts. The mechanism of action of omecamtiv mecarbil also provides insights into uncovering how force is generated by molecular motors.Omecamtiv mecarbil (OM) is a cardiac myosin activator that is currently in clinical trials for heart failure treatment. Here, the authors give insights into its mode of action and present the crystal structure of OM bound to bovine cardiac myosin, which shows that OM stabilizes the pre-powerstroke state of myosin.


Subject(s)
Cardiac Myosins/chemistry , Urea/analogs & derivatives , Animals , Binding Sites , Cardiac Myosins/drug effects , Cattle , Crystallization , Protein Conformation , Urea/pharmacology
7.
Nat Commun ; 8: 15864, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28660889

ABSTRACT

Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Myosins/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Binding Sites , Cadherins/chemistry , Cadherins/metabolism , Carrier Proteins/chemistry , Cell Cycle Proteins , Crystallography, X-Ray , Cytoskeletal Proteins , Deafness/genetics , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutation , Myosin VIIa , Myosins/genetics , Myosins/metabolism , Protein Domains , Scattering, Small Angle , Stereocilia/genetics , Stereocilia/metabolism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...