Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Nephrol ; 33(11): 2108-2122, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36041788

ABSTRACT

BACKGROUND: Among patients with COVID-19, kidney transplant recipients (KTRs) have poor outcomes compared with non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort. METHODS: We ascertained clinical data by chart review. A single sample of blood was collected for transcriptome analysis. Total RNA was poly-A selected and RNA was sequenced to evaluate transcriptome changes. We also measured cytokines and chemokines of serum samples collected during acute infection. RESULTS: A total of 64 patients with COVID-19 in KTRs were enrolled, including 31 with acute COVID-19 (<4 weeks from diagnosis) and 33 with post-acute COVID-19 (>4 weeks postdiagnosis). In the blood transcriptome of acute cases, we identified genes in positive or negative association with COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways but downregulation of T cell and adaptive immune activation pathways. This finding was independent of lymphocyte count, despite reduced immunosuppressant use in most KTRs. Compared with acute cases, post-acute cases showed "normalization" of these enriched pathways after 4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of immunosuppression. Analysis of the non-KTR cohort with COVID-19 showed significant overlap with KTRs in these functions. Serum inflammatory cytokines followed an opposite trend (i.e., increased with disease severity), indicating that blood lymphocytes are not the primary source. CONCLUSIONS: The blood transcriptome of KTRs affected by COVID-19 shows decreases in T cell and adaptive immune activation pathways during acute disease that, despite reduced immunosuppressant use, associate with severity. These pathways show recovery after acute illness.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , SARS-CoV-2 , COVID-19/genetics , Transcriptome , Acute Disease , Transplant Recipients , Immunosuppressive Agents/therapeutic use , Cytokines , RNA
2.
medRxiv ; 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35132424

ABSTRACT

BACKGROUND: Kidney transplant recipients (KTRs) with COVID-19 have poor outcomes compared to non-KTRs. To provide insight into management of immunosuppression during acute illness, we studied immune signatures from the peripheral blood during and after COVID-19 infection from a multicenter KTR cohort.□. METHODS: Clinical data were collected by chart review. PAXgene blood RNA was poly-A selected and RNA sequencing was performed to evaluate transcriptome changes. RESULTS: A total of 64 cases of COVID-19 in KTRs were enrolled, including 31 acute cases (< 4 weeks from diagnosis) and 33 post-acute cases (>4 weeks). In the blood transcriptome of acute cases, we identified differentially expressed genes (DEGs) in positive or negative association COVID-19 severity scores. Functional enrichment analyses showed upregulation of neutrophil and innate immune pathways, but downregulation of T-cell and adaptive immune-activation pathways proportional to severity score. This finding was independent of lymphocyte count and despite reduction in immunosuppression (IS) in most KTRs. Comparison with post-acute cases showed "normalization" of these enriched pathways after >4 weeks, suggesting recovery of adaptive immune system activation despite reinstitution of IS. The latter analysis was adjusted for COVID-19 severity score and lymphocyte count. DEGs associated with worsening disease severity in a non-KTR cohort with COVID-19 (GSE152418) showed significant overlap with KTRs in these identified enriched pathways. CONCLUSION: Blood transcriptome of KTRs affected by COVID-19 shows decrease in T-cell and adaptive immune activation pathways during acute disease that associate with severity despite IS reduction and show recovery after acute illness. SIGNIFICANCE STATEMENT: Kidney transplant recipients (KTRs) are reported to have worse outcomes with COVID-19, and empiric reduction of maintenance immunosuppression is pursued. Surprisingly, reported rates of acute rejection have been low despite reduced immunosuppression. We evaluated the peripheral blood transcriptome of 64 KTRs either during or after acute COVID-19. We identified transcriptomic signatures consistent with suppression of adaptive T-cell responses which significantly associated with disease severity and showed evidence of recovery after acute disease, even after adjustment for lymphocyte number. Our transcriptomic findings of immune-insufficiency during acute COVID-19 provide an explanation for the low rates of acute rejection in KTRs despite reduced immunosuppression. Our data support the approach of temporarily reducing T -cell-directed immunosuppression in KTRs with acute COVID-19.

3.
JCI Insight ; 6(19)2021 10 08.
Article in English | MEDLINE | ID: mdl-34473647

ABSTRACT

Herein, we report that Shroom3 knockdown, via Fyn inhibition, induced albuminuria with foot process effacement (FPE) without focal segmental glomerulosclerosis (FSGS) or podocytopenia. Interestingly, knockdown mice had reduced podocyte volumes. Human minimal change disease (MCD), where podocyte Fyn inactivation was reported, also showed lower glomerular volumes than FSGS. We hypothesized that lower glomerular volume prevented the progression to podocytopenia. To test this hypothesis, we utilized unilateral and 5/6th nephrectomy models in Shroom3-KD mice. Knockdown mice exhibited less glomerular and podocyte hypertrophy after nephrectomy. FYN-knockdown podocytes had similar reductions in podocyte volume, implying that Fyn was downstream of Shroom3. Using SHROOM3 or FYN knockdown, we confirmed reduced podocyte protein content, along with significantly increased phosphorylated AMPK, a negative regulator of anabolism. AMPK activation resulted from increased cytoplasmic redistribution of LKB1 in podocytes. Inhibition of AMPK abolished the reduction in glomerular volume and induced podocytopenia in mice with FPE, suggesting a protective role for AMPK activation. In agreement with this, treatment of glomerular injury models with AMPK activators restricted glomerular volume, podocytopenia, and progression to FSGS. Glomerular transcriptomes from MCD biopsies also showed significant enrichment of Fyn inactivation and Ampk activation versus FSGS glomeruli. In summary, we demonstrated the important role of AMPK in glomerular volume regulation and podocyte survival. Our data suggest that AMPK activation adaptively regulates glomerular volume to prevent podocytopenia in the context of podocyte injury.


Subject(s)
Adenylate Kinase/metabolism , Kidney Glomerulus/metabolism , Microfilament Proteins/genetics , Nephrotic Syndrome/genetics , Podocytes/metabolism , Adenylate Kinase/antagonists & inhibitors , Adolescent , Adult , Aged , Albuminuria/genetics , Animals , Cell Size , Cell Survival/genetics , Child , Child, Preschool , Female , Gene Knockdown Techniques , Glomerulonephritis, Membranous/genetics , Glomerulonephritis, Membranous/pathology , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/pathology , Humans , Hypertrophy , Infant , Kidney Glomerulus/pathology , Male , Mice , Middle Aged , Nephrectomy , Nephrosis, Lipoid/genetics , Nephrosis, Lipoid/pathology , Nephrotic Syndrome/pathology , Podocytes/pathology , Proportional Hazards Models , Proto-Oncogene Proteins c-fyn/genetics , Young Adult
4.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34499625

ABSTRACT

Apolipoprotein L1 (APOL1) risk alleles in donor kidneys associate with graft loss, but whether recipient risk allele expression affects transplant outcomes is unclear. To test whether recipient APOL1 risk alleles independently correlate with transplant outcomes, we analyzed genome-wide SNP genotyping data on donors and recipients from 2 kidney transplant cohorts: Genomics of Chronic Allograft Rejection (GOCAR) and Clinical Trials in Organ Transplantation 01/17 (CTOT-01/17). We estimated genetic ancestry (quantified as the proportion of African ancestry, or pAFR) by ADMIXTURE and correlated APOL1 genotypes and pAFR with outcomes. In the GOCAR discovery set, we noted that the number of recipient APOL1 G1/G2 alleles (R-nAPOL1) associated with an increased risk of death-censored allograft loss (DCAL), independent of ancestry (HR = 2.14; P = 0.006), as well as within the subgroup of African American and Hispanic (AA/H) recipients (HR = 2.36; P = 0.003). R-nAPOL1 also associated with an increased risk of any T cell-mediated rejection (TCMR) event. These associations were validated in CTOT-01/17. Ex vivo studies of PMBCs revealed, unexpectedly, high expression levels of APOL1 in activated CD4+/CD8+ T cells and NK cells. We detected enriched immune response gene pathways in risk allele carriers compared with noncarriers on the kidney transplant waitlist and among healthy controls. Our findings demonstrate an immunomodulatory role for recipient APOL1 risk alleles associated with TCMR and DCAL. We believe this finding has broader implications for immune-mediated injury to native kidneys.


Subject(s)
Apolipoprotein L1/genetics , Graft Rejection/genetics , Graft Survival/genetics , Kidney Transplantation/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Creatinine/blood , Female , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk , T-Lymphocytes/immunology , Transplantation, Homologous , Young Adult
5.
Elife ; 102021 05 18.
Article in English | MEDLINE | ID: mdl-34002695

ABSTRACT

Background: Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis. Methods: To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as ß-thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone. Results: We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low-bone-mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP-mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss. Conclusions: Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in ß-thalassemia. Funding: YZG acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to YZG and DK095112 to RF, SR, and YZG). MZ acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). TY acknowledges the support of the National Institute on Aging (R01 AG71870). SR acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (CURE) Program Pennsylvania.


Subject(s)
Bone and Bones/metabolism , Cytokines/metabolism , Muscle Proteins/metabolism , Osteoblasts/metabolism , Animals , Bone Development/genetics , Bone Morphogenetic Proteins/metabolism , Cells, Cultured , Cytokines/genetics , Disease Models, Animal , Erythroblasts , Erythropoiesis , Hepcidins , Male , Mice, Inbred C57BL , Muscle Proteins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/metabolism
6.
Anticancer Drugs ; 26(9): 942-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26196680

ABSTRACT

Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) is a colorectal cancer (CRC) stem cell marker. The role of Lgr5-expressing stem cells in resistance to chemotherapy is controversial. The notion that Lgr5-expressing cells are more chemotherapy resistant is supported by some data; other data do not support this notion. We hypothesized that Lgr5-expressing cells would be more chemotherapy sensitive, as Lgr5 is usually a marker of dividing cells. We tested this hypothesis by exploiting two natural variants of SW480 CRC cells: the less-differentiated Lgr5-expressing floating fraction and the more-differentiated Lgr5-depleted attached fraction. We estimated chemotherapy sensitivity using an XTT Cell Proliferation Assay Kit. We confirmed that the detected chemotherapy sensitivity differences were Lgr5-driven by overexpressing Lgr5. SW480 CRC cells that naturally express Lgr5 are those that are floating, and they are more sensitive to the chemotherapeutic compounds irinotecan (maximum difference approximately two times, 0.0001

Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/metabolism , Drug Resistance, Neoplasm , Receptors, G-Protein-Coupled/metabolism , Camptothecin/analogs & derivatives , Camptothecin/pharmacology , Cell Adhesion , Cell Count , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Fluorouracil/pharmacology , Humans , Irinotecan , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Organoplatinum Compounds/pharmacology , Oxaliplatin , Receptors, G-Protein-Coupled/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...