Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1281628, 2023.
Article in English | MEDLINE | ID: mdl-38033561

ABSTRACT

Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.

2.
ACS Omega ; 6(49): 33542-33553, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926903

ABSTRACT

Chemical modification of wood applying benzotriazolyl-activated carboxylic acids has proven to be a versatile method for the durable functionalization of its lignocellulosic biopolymers. Through this process, the material properties of wood can be influenced and specifically optimized. To check the scope and limitations of this modification method, various benzamide derivatives with electron-withdrawing (EWG) or electron-donating (EDG) functional groups in different positions of the aromatic ring were synthesized and applied for covalent modification of Scots pine (Pinus sylvestris L.) sapwood in this study. The bonded amounts of substances (up to 2.20 mmol) were compared with the reactivity constants of the Hammett equation, revealing a significant correlation between the modification efficiency and the theoretical reactivity constants of the corresponding aromatic substitution pattern. The successful covalent attachment of the respective substituted benzamides was proven by attenuated total reflection infrared (ATR-IR) spectroscopy, while the stability of the newly formed ester bond was proven in a standardized leaching test.

3.
Genes (Basel) ; 12(8)2021 07 22.
Article in English | MEDLINE | ID: mdl-34440287

ABSTRACT

The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine ß-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Keratins/metabolism , Larva/genetics , Lepidoptera/genetics , Transcriptome , Animals , Gene Ontology , Lepidoptera/growth & development
4.
PLoS One ; 16(2): e0246511, 2021.
Article in English | MEDLINE | ID: mdl-33606771

ABSTRACT

Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of wood-based structures in a layer wise fashion using the Binder Jetting printing process. The quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing.


Subject(s)
Printing, Three-Dimensional , Wood , Animals , Isoptera
5.
Front Microbiol ; 11: 597628, 2020.
Article in English | MEDLINE | ID: mdl-33240253

ABSTRACT

Microbial communities in the immediate environment of socialized invertebrates can help to suppress pathogens, in part by synthesizing bioactive natural products. Here we characterized the core microbiomes of three termite species (genus Coptotermes) and their nest material to gain more insight into the diversity of termite-associated bacteria. Sampling a healthy termite colony over time implicated a consolidated and highly stable microbiome, pointing toward the fact that beneficial bacterial phyla play a major role in termite fitness. In contrast, there was a significant shift in the composition of the core microbiome in one nest during a fungal infection, affecting the abundance of well-characterized Streptomyces species (phylum Actinobacteria) as well as less-studied bacterial phyla such as Acidobacteria. High-throughput cultivation in microplates was implemented to isolate and identify these less-studied bacterial phylogenetic group. Amplicon sequencing confirmed that our method maintained the bacterial diversity of the environmental samples, enabling the isolation of novel Acidobacteriaceae and expanding the list of cultivated species to include two strains that may define new species within the genera Terracidiphilus and Acidobacterium.

6.
Microorganisms ; 8(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937935

ABSTRACT

The evolutionary success of insects is promoted by their association with beneficial microbes that enable the utilization of unusual diets. The synanthropic clothing moth Tineola bisselliella provides an intriguing example of this phenomenon. The caterpillars of this species have adapted to feed on keratin-rich diets such as feathers and wool, which cannot be digested by most other animals and are resistant to common digestive enzymes. Inspired by the hypothesis that this ability may be conferred by symbiotic microbes, we utilized a simple assay to detect keratinase activity and a method to screen gut bacteria for candidate enzymes, which were isolated from feather-fed larvae. The isolation of DNA from keratin-degrading bacterial strains followed by de novo genome sequencing resulted in the identification of a novel bacterial strain related to Bacillus sp. FDAARGOS_235. Genome annotation identified 20 genes with keratinase domains. Proteomic analysis of the culture supernatant from this gut bacterium grown in non-nutrient buffer supplemented with feathers revealed several candidate enzymes potentially responsible for keratin degradation, including a thiol-disulfide oxidoreductase and multiple proteases. Our results suggest that the unusual diet of T. bisselliella larvae promotes their association with keratinolytic microorganisms and that the ability of larvae to feed on keratin can at least partially be attributed to bacteria that produce a cocktail of keratin-degrading enzymes.

7.
RSC Adv ; 10(27): 15726-15733, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35493663

ABSTRACT

Timber is constantly exposed to environmental influences under outdoor conditions which limits its lifetime and usability. In order to counteract the damaging processes caused by insects, we have developed a novel and more environmentally friendly method to protect wood materials via covalent modification by organic insecticides. Starting with an important class of synthetic insecticides which are derived from the natural insecticide nicotine, various new carboxylic acid derivatives of imidacloprid were made accessible. These activated neonicotinoids were utilized for the chemical modification of wood hydroxy groups. In contrast to conventional wood preservation methods in which biocides are only physically bound to the surface for a limited time, the covalent fixation of the preservative guarantees a permanent effect against wood pests, demonstrated in standardized biological tests. Additionally, the environmental interaction caused by non-bound neonicotinoids is significantly reduced, since both, a smaller application rate is required and leaching of the active ingredient is prevented. By minimizing the pest infestation, the lifetime of the material increases while preserving the natural appearance of the material.

8.
Mol Ecol ; 27(8): 2095-2108, 2018 04.
Article in English | MEDLINE | ID: mdl-29117633

ABSTRACT

Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities.


Subject(s)
Bacteroidetes/genetics , Host Microbial Interactions/genetics , Symbiosis/genetics , Weevils/microbiology , Animals , Bacteroidetes/pathogenicity , Desiccation , Ecology , Phylogeny , Weevils/genetics , Weevils/physiology
9.
Environ Microbiol Rep ; 9(5): 477-483, 2017 10.
Article in English | MEDLINE | ID: mdl-28677262

ABSTRACT

Bacteria of the class Endomicrobia form a deep-branching clade in the Elusimicrobia phylum. They are found almost exclusively in the intestinal tract of animals and are particularly abundant in many termites, where they reside as intracellular symbionts in the cellulolytic gut flagellates. Although small populations of putatively free-living lineages have been detected in faunated and flagellate-free hosts, the evolutionary origin of the endosymbionts is obscured by the limited amount of phylogenetic information provided by the 16S rRNA gene fragment amplified with Endomicrobia-specific primers. Here, we present a robust phylogenetic framework based on the near-full-length 16S-23S rRNA gene region of a diverse set of Endomicrobia from termites and cockroaches, which also allowed us to classify the shorter reads from previous studies. Our data revealed that endosymbionts arose independently at least four times from different free-living lineages, which were already present in ancestral cockroaches but became associated with their respective hosts long after the digestive symbiosis between termites and flagellates had been established. Pyrotag sequencing revealed that the proportion of putatively free-living lineages increased, when all flagellates and their symbionts were removed from the gut of lower termites by starvation, starch feeding or hyperbaric oxygen, but results varied between different methods.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Metagenomics , Phylogeny , Symbiosis , Animals , Bacteria/classification , Bacteria/genetics , DNA, Intergenic , Insecta/microbiology , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics
10.
Environ Microbiol ; 14(12): 3259-70, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23116209

ABSTRACT

Termite gut flagellates are colonized by host-specific lineages of ectosymbiotic and endosymbiotic bacteria. Previous studies have shown that flagellates of the genus Trichonympha may harbour more than one type of symbiont. Using a comprehensive approach that combined cloning of SSU rRNA genes with fluorescence in situ hybridization and electron microscopy, we investigated the phylogeny and subcellular locations of the symbionts in a variety of Trichonympha species from different termites. The flagellates in Trichonympha Cluster I were the only species associated with 'Endomicrobia', which were located in the posterior part of the cell, confirming previous results. Trichonympha species of Cluster II from the termite genus Incisitermes (family Kalotermitidae) lacked 'Endomicrobia' and were associated with endosymbiotic Actinobacteria, which is highly unusual. The endosymbionts, for which we suggest the name 'Candidatus Ancillula trichonymphae', represent a novel, deep-branching lineage in the Micrococcineae that consists exclusively of clones from termite guts. They preferentially colonized the anterior part of the flagellate host and were highly abundant in all species of Trichonympha Cluster II except Trichonympha globulosa. Here, they were outnumbered by a Desulfovibrio species associated with the cytoplasmic lamellae at the anterior cell pole. Such symbionts are present in both Trichonympha clusters, but not in all species. Unlike the intracellular location reported for the Desulfovibrio symbionts of Trichonympha agilis (Cluster I), the Desulfovibrio symbionts of T. globulosa (Cluster II) were situated in deep invaginations of the plasma membrane that were clearly connected to the exterior of the host cell.


Subject(s)
Actinobacteria/classification , Desulfovibrio/classification , Gastrointestinal Tract/microbiology , Hypermastigia/classification , Isoptera/microbiology , Symbiosis , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/ultrastructure , Animals , Cloning, Molecular , Desulfovibrio/genetics , Desulfovibrio/isolation & purification , Desulfovibrio/ultrastructure , Genes, rRNA , Hypermastigia/isolation & purification , Hypermastigia/physiology , Hypermastigia/ultrastructure , Phylogeny , Species Specificity , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...