Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1408, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082346

ABSTRACT

Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis for establishing age-specific morphologic milestones. However, gauging age-appropriate neural development remains a difficult task due to the constantly changing appearance of the fetal brain, variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-guided deep learning model that predicts gestational age with R2 score of 0.945, mean absolute error of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability using independent datasets from four academic institutions across the U.S. and Turkey with R2 scores of 0.81-0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide real-time gestational age estimation after the first trimester.


Subject(s)
Brain/diagnostic imaging , Deep Learning , Gestational Age , Image Processing, Computer-Assisted/statistics & numerical data , Magnetic Resonance Imaging/standards , Neuroimaging/standards , Artifacts , Brain/growth & development , Datasets as Topic , Female , Fetus , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Pregnancy , Pregnancy Trimesters/physiology , Turkey , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...