Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Organometallics ; 42(17): 2378-2394, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37711884

ABSTRACT

Direct C-H functionalization reactions have opened new avenues in catalysis, removing the need for prefunctionalization of at least one of the substrates. Although C-H functionalization catalyzed by palladium complexes in the presence of a base is generally considered to proceed by the CMD/AMLA-6 mechanism, recent research has shown that silver(I) salts, frequently used as bases, can function as C-H bond activators instead of (or in addition to) palladium(II). In this study, we examine the coupling of pentafluorobenzene 1 to 4-iodotoluene 2a (and its analogues) to form 4-(pentafluorophenyl)toluene 3a catalyzed by palladium(II) acetate with the commonplace PPh3 ligand, silver carbonate as base, and DMF as solvent. By studying the reaction of 1 with Ag2CO3/PPh3 and with isolated silver (triphenylphosphine) carbonate complexes, we show the formation of C-H activation products containing the Ag(C6F5)(PPh3)n unit. However, analysis is complicated by the lability of the Ag-PPh3 bond and the presence of multiple species in the solution. The speciation of palladium(II) is investigated by high-resolution-MAS NMR (chosen for its suitability for suspensions) with a substoichiometric catalyst, demonstrating the formation of an equilibrium mixture of Pd(Ar)(κ1-OAc)(PPh3)2 and [Pd(Ar)(µ-OAc)(PPh3)]2 as resting states (Ar = Ph, 4-tolyl). These two complexes react stoichiometrically with 1 to form coupling products. The catalytic reaction kinetics is investigated by in situ IR spectroscopy revealing a two-term rate law and dependence on [Pdtot/nPPh3]0.5 consistent with the dissociation of an off-cycle palladium dimer. The first term is independent of [1], whereas the second term is first order in [1]. The observed rates are very similar with Pd(PPh3)4, Pd(Ph)(κ1-OAc)(PPh3)2, and [Pd(Ph)(µ-OAc)(PPh3)]2 catalysts. The kinetic isotope effect varied significantly according to conditions. The multiple speciation of both AgI and PdII acts as a warning against specifying the catalytic cycles in detail. Moreover, the rapid dynamic interconversion of AgI species creates a level of complexity that has not been appreciated previously.

2.
Front Microbiol ; 14: 1097500, 2023.
Article in English | MEDLINE | ID: mdl-36970672

ABSTRACT

The addition of small amounts of algal biomass to stimulate methane production in coal seams is a promising low carbon renewable coalbed methane enhancement technique. However, little is known about how the addition of algal biomass amendment affects methane production from coals of different thermal maturity. Here, we show that biogenic methane can be produced from five coals ranging in rank from lignite to low-volatile bituminous using a coal-derived microbial consortium in batch microcosms with and without algal amendment. The addition of 0.1 g/l algal biomass resulted in maximum methane production rates up to 37 days earlier and decreased the time required to reach maximum methane production by 17-19 days when compared to unamended, analogous microcosms. Cumulative methane production and methane production rate were generally highest in low rank, subbituminous coals, but no clear association between increasing vitrinite reflectance and decreasing methane production could be determined. Microbial community analysis revealed that archaeal populations were correlated with methane production rate (p = 0.01), vitrinite reflectance (p = 0.03), percent volatile matter (p = 0.03), and fixed carbon (p = 0.02), all of which are related to coal rank and composition. Sequences indicative of the acetoclastic methanogenic genus Methanosaeta dominated low rank coal microcosms. Amended treatments that had increased methane production relative to unamended analogs had high relative abundances of the hydrogenotrophic methanogenic genus Methanobacterium and the bacterial family Pseudomonadaceae. These results suggest that algal amendment may shift coal-derived microbial communities towards coal-degrading bacteria and CO2-reducing methanogens. These results have broad implications for understanding subsurface carbon cycling in coal beds and the adoption of low carbon renewable microbially enhanced coalbed methane techniques across a diverse range of coal geology.

3.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35142487

ABSTRACT

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Subject(s)
Coal , Methane , Carbon , Natural Gas
SELECTION OF CITATIONS
SEARCH DETAIL
...