Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Annu Rev Biochem ; 93(1): 233-259, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38621235

ABSTRACT

Peroxisomes are organelles that play a central role in lipid metabolism and cellular redox homeostasis. The import of peroxisomal matrix proteins by peroxisomal targeting signal (PTS) receptors is an ATP-dependent mechanism. However, the energy-dependent steps do not occur early during the binding of the receptor-cargo complex to the membrane but late, because they are linked to the peroxisomal export complex for the release of the unloaded receptor. The first ATP-demanding step is the cysteine-dependent monoubiquitination of the PTS receptors, which is required for recognition by the AAA+ peroxins. They execute the second ATP-dependent step by extracting the ubiqitinated PTS receptors from the membrane for release back to the cytosol. After deubiquitination, the PTS receptors regain import competence and can facilitate further rounds of cargo import. Here, we give a general overview and discuss recent data regarding the ATP-dependent steps in peroxisome protein import.


Subject(s)
Adenosine Triphosphate , Peroxisomes , Protein Transport , Ubiquitination , Peroxisomes/metabolism , Adenosine Triphosphate/metabolism , Humans , Animals , Peroxisome-Targeting Signal 1 Receptor/metabolism , Peroxisome-Targeting Signal 1 Receptor/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Peroxisomal Targeting Signals , Peroxins/metabolism , Peroxins/genetics , Membrane Proteins
2.
Biol Chem ; 404(2-3): 135-155, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36122347

ABSTRACT

Peroxisomes are organelles with vital functions in metabolism and their dysfunction is associated with human diseases. To fulfill their multiple roles, peroxisomes import nuclear-encoded matrix proteins, most carrying a peroxisomal targeting signal (PTS) 1. The receptor Pex5p recruits PTS1-proteins for import into peroxisomes; whether and how this process is posttranslationally regulated is unknown. Here, we identify 22 phosphorylation sites of Pex5p. Yeast cells expressing phospho-mimicking Pex5p-S507/523D (Pex5p2D) show decreased import of GFP with a PTS1. We show that the binding affinity between a PTS1-protein and Pex5p2D is reduced. An in vivo analysis of the effect of the phospho-mimicking mutant on PTS1-proteins revealed that import of most, but not all, cargos is affected. The physiological effect of the phosphomimetic mutations correlates with the binding affinity of the corresponding extended PTS1-sequences. Thus, we report a novel Pex5p phosphorylation-dependent mechanism for regulating PTS1-protein import into peroxisomes. In a broader view, this suggests that posttranslational modifications can function in fine-tuning the peroxisomal protein composition and, thus, cellular metabolism.


Subject(s)
Peroxisomes , Receptors, Cytoplasmic and Nuclear , Humans , Phosphorylation , Peroxisomes/metabolism , Peroxisome-Targeting Signal 1 Receptor/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Carrier Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Protein Transport
3.
J Cell Biol ; 221(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34889952

ABSTRACT

A recent study by Zheng et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202103156) identifies the ubiquitin-protein ligase (E3) MARCH5 as a dual-organelle localized protein that not only targets to mitochondria but also to peroxisomes in a PEX19-mediated manner. Moreover, the authors demonstrate that the Torin1-dependent induction of pexophagy is executed by the MARCH5-catalyzed ubiquitination of the peroxisomal membrane protein PMP70.


Subject(s)
Peroxisomes , Ubiquitin-Protein Ligases , Macroautophagy , Membrane Proteins/genetics , Membrane Proteins/metabolism , Peroxisomes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Front Cell Dev Biol ; 8: 574363, 2020.
Article in English | MEDLINE | ID: mdl-33195209

ABSTRACT

The maintenance of a fluid lipid bilayer is key for organelle function and cell viability. Given the critical role of lipid compositions in determining membrane properties and organelle identity, it is clear that cells must have elaborate mechanism for membrane maintenance during adaptive responses to environmental conditions. Emphasis of the presented study is on peroxisomes, oleic acid-inducible organelles that are essential for the growth of yeast under conditions of oleic acid as single carbon source. Here, we isolated peroxisomes, mitochondria and ER from oleic acid-induced Saccharomyces cerevisiae and determined the lipid composition of their membranes using shotgun lipidomics and compared it to lipid ordering using fluorescence microscopy. In comparison to mitochondrial and ER membranes, the peroxisomal membranes were slightly more disordered and characterized by a distinct enrichment of phosphaditylinositol, indicating an important role of this phospholipid in peroxisomal membrane associated processes.

5.
Biomolecules ; 10(11)2020 11 14.
Article in English | MEDLINE | ID: mdl-33202661

ABSTRACT

The changing accessibility of nutrient resources induces the reprogramming of cellular metabolism in order to adapt the cell to the altered growth conditions. The nutrient-depending signaling depends on the kinases mTOR (mechanistic target of rapamycin), which is mainly activated by nitrogen-resources, and PKA (protein kinase A), which is mainly activated by glucose, as well as both of their associated factors. These systems promote protein synthesis and cell proliferation, while they inhibit degradation of cellular content by unselective bulk autophagy. Much less is known about their role in selective autophagy pathways, which have a more regulated cellular function. Especially, we were interested to analyse the central Ras2-module of the PKA-pathway in the context of peroxisome degradation. Yeast Ras2 is homologous to the mammalian Ras proteins, whose mutant forms are responsible for 33% of human cancers. In the present study, we were able to demonstrate a context-dependent role of Ras2 activity depending on the type of mTOR-inhibition and glucose-sensing situation. When mTOR was inhibited directly via the macrolide rapamycin, peroxisome degradation was still partially suppressed by Ras2, while inactivation of Ras2 resulted in an enhanced degradation of peroxisomes, suggesting a role of Ras2 in the inhibition of peroxisome degradation in glucose-grown cells. In contrast, the inhibition of mTOR by shifting cells from oleate-medium, which lacks glucose, to pexophagy-medium, which contains glucose and is limited in nitrogen, required Ras2-activity for efficient pexophagy, strongly suggesting that the role of Ras2 in glucose sensing-associated signaling is more important in this context than its co-function in mTOR-related autophagy-inhibition.


Subject(s)
Autophagy/physiology , Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , ras Proteins/metabolism , Glucose/metabolism , Peroxisomes/pathology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , ras Proteins/genetics
6.
Int J Mol Sci ; 21(3)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013259

ABSTRACT

The important physiologic role of peroxisomes is shown by the occurrence of peroxisomal biogenesis disorders (PBDs) in humans. This spectrum of autosomal recessive metabolic disorders is characterized by defective peroxisome assembly and impaired peroxisomal functions. PBDs are caused by mutations in the peroxisomal biogenesis factors, which are required for the correct compartmentalization of peroxisomal matrix enzymes. Recent work from patient cells that contain the Pex1(G843D) point mutant suggested that the inhibition of the lysosome, and therefore the block of pexophagy, was beneficial for peroxisomal function. The resulting working model proposed that Pex1 may not be essential for matrix protein import at all, but rather for the prevention of pexophagy. Thus, the observed matrix protein import defect would not be caused by a lack of Pex1 activity, but rather by enhanced removal of peroxisomal membranes via pexophagy. In the present study, we can show that the specific block of PEX1 deletion-induced pexophagy does not restore peroxisomal matrix protein import or the peroxisomal function in beta-oxidation in yeast. Therefore, we conclude that Pex1 is directly and essentially involved in peroxisomal matrix protein import, and that the PEX1 deletion-induced pexophagy is not responsible for the defect in peroxisomal function. In order to point out the conserved mechanism, we discuss our findings in the context of the working models of peroxisomal biogenesis and pexophagy in yeasts and mammals.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Membrane Proteins/genetics , Peroxisomal Targeting Signals/genetics , Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , ATPases Associated with Diverse Cellular Activities/deficiency , ATPases Associated with Diverse Cellular Activities/metabolism , Macroautophagy , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Peroxins/genetics , Peroxins/metabolism , Protein Transport , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
FEBS J ; 287(9): 1737-1741, 2020 05.
Article in English | MEDLINE | ID: mdl-31858686

ABSTRACT

Peroxisomes can undergo fission during cell division, followed by their segregation between mother and daughter cells. Despite species-specific variations in the molecular composition of the fission machinery, the central mechanistic factors can be assigned to two groups: the Pex11 family and the dynamin-related protein family. In a recent study, Singh et al. describe the involvement of a member of the Pxmp2-related protein family in peroxisome fission: the novel peroxin Pex37.


Subject(s)
Intracellular Membranes , Peroxisomes , Peroxins , Proteins , Saccharomycetales
8.
Cells ; 8(7)2019 06 30.
Article in English | MEDLINE | ID: mdl-31262095

ABSTRACT

The yeast vacuole is a vital organelle, which is required for the degradation of aberrant intracellular or extracellular substrates and the recycling of the resulting nutrients as newly available building blocks for the cellular metabolism. Like the plant vacuole or the mammalian lysosome, the yeast vacuole is the destination of biosynthetic trafficking pathways that transport the vacuolar enzymes required for its functions. Moreover, substrates destined for degradation, like extracellular endocytosed cargoes that are transported by endosomes/multivesicular bodies as well as intracellular substrates that are transported via different forms of autophagosomes, have the vacuole as destination. We found that non-selective bulk autophagy of cytosolic proteins as well as the selective autophagic degradation of peroxisomes (pexophagy) and ribosomes (ribophagy) was dependent on the armadillo repeat protein Vac8 in Saccharomyces cerevisiae. Moreover, we showed that pexophagy and ribophagy depended on the palmitoylation of Vac8. In contrast, we described that Vac8 was not involved in the acidification of the vacuole nor in the targeting and maturation of certain biosynthetic cargoes, like the aspartyl-protease Pep4 (PrA) and the carboxy-peptidase Y (CPY), indicating a role of Vac8 in the uptake of selected cargoes. In addition, we found that the hallmark phenotype of the vac8 strain, namely the characteristic appearance of fragmented and clustered vacuoles, depended on the growth conditions. This fusion defect observed in standard glucose medium can be complemented by the replacement with oleic acid or glycerol medium. This complementation of vacuolar morphology also partially restores the degradation of peroxisomes. In summary, we found that Vac8 controlled vacuolar morphology and activity in a context- and cargo-dependent manner.


Subject(s)
Autophagy , Intracellular Membranes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism , Lipoylation , Peroxisomes/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Deletion , Vesicular Transport Proteins/genetics
9.
Sci Rep ; 9(1): 10557, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332264

ABSTRACT

The vacuole is the hydrolytic compartment of yeast cells and has a similar function as the lysosome of higher eukaryotes in detoxification and recycling of macromolecules. We analysed the contribution of single vacuolar enzymes to pexophagy and identified the phospholipase Atg15, the V-ATPase factor Vma2 and the serine-protease Prb1 along with the already known aspartyl-protease Pep4 (Proteinase A) to be required for this pathway. We also analysed the trafficking receptor Vps10, which is required for an efficient vacuolar targeting of the precursor form of Pep4. Here we demonstrate a novel context-dependent role of Vps10 in autophagy. We show that reduced maturation of Pep4 in a VPS10-deletion strain affects the proteolytic activity of the vacuole depending on the type and amount of substrate. The VPS10-deletion has no effect on the degradation of the cytosolic protein Pgk1 via bulk autophagy or on the degradation of ribosomes via ribophagy. In contrast, the degradation of an excess of peroxisomes via pexophagy as well as mitochondria via mitophagy was significantly hampered in a VPS10-deletion strain and correlated with a decreased maturation level of Pep4. The results show that Vps10-mediated targeting of Pep4 limits the proteolytic capacity of the vacuole in a substrate-dependent manner.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism , Aspartic Acid Endopeptidases/deficiency , Aspartic Acid Endopeptidases/genetics , Autophagy , Gene Deletion , Genes, Fungal , Macroautophagy , Models, Biological , Peroxisomes/metabolism , Phosphoglycerate Kinase/metabolism , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Vacuoles/metabolism , Vesicular Transport Proteins/deficiency , Vesicular Transport Proteins/genetics
10.
Cells ; 8(1)2019 01 02.
Article in English | MEDLINE | ID: mdl-30609721

ABSTRACT

The mechanistic target of Rapamycin (mTOR) is a ubiquitously-conserved serine/threonine kinase, which has a central function in integrating growth signals and orchestrating their physiologic effects on cellular level. mTOR is the core component of differently composed signaling complexes that differ in protein composition and molecular targets. Newly identified classes of mTOR inhibitors are being developed to block autoimmune diseases and transplant rejections but also to treat obesity, diabetes, and different types of cancer. Therefore, the selective and context-dependent inhibition of mTOR activity itself might come into the focus as molecular target to prevent severe diseases and possibly to extend life span. This review provides a general introduction to the molecular composition and physiologic function of mTOR complexes as part of the Special Issue "2018 Select Papers by Cells' Editorial Board Members".


Subject(s)
Aging , Autoimmune Diseases , Diabetes Mellitus , Neoplasms , Obesity , TOR Serine-Threonine Kinases , Aging/drug effects , Aging/metabolism , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Obesity/drug therapy , Obesity/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/physiology
11.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 199-213, 2019 02.
Article in English | MEDLINE | ID: mdl-30408545

ABSTRACT

Peroxisomal biogenesis depends on the correct import of matrix proteins into the lumen of the organelle. Most peroxisomal matrix proteins harbor the peroxisomal targeting-type 1 (PTS1), which is recognized by the soluble PTS1-receptor Pex5p in the cytosol. Pex5p ferries the PTS1-proteins to the peroxisomal membrane and releases them into the lumen. Finally, the PTS1-receptor is monoubiquitinated on the conserved cysteine 6 in Saccharomyces cerevisiae. The monoubiquitinated Pex5p is recognized by the peroxisomal export machinery and is retrotranslocated into the cytosol for further rounds of protein import. However, the functional relevance of deubiquitination has not yet been addressed. In this study, we have analyzed a Pex5p-truncation lacking Cys6 [(Δ6)Pex5p], a construct with a ubiquitin-moiety genetically fused to the truncation [Ub-(Δ6)Pex5p], as well as a construct with a reduced susceptibility to deubiquitination [Ub(G75/76A)-(Δ6)Pex5p]. While the (Δ6)Pex5p-truncation is not functional, the Ub-(Δ6)Pex5p chimeric protein can facilitate matrix protein import. In contrast, the Ub(G75/76A)-(Δ6)Pex5p chimera exhibits a complete PTS1-import defect. The data show for the first time that not only ubiquitination but also deubiquitination rates are tightly regulated and that efficient deubiquitination of Pex5p is essential for peroxisomal biogenesis.


Subject(s)
Peroxisomal Targeting Signals/physiology , Peroxisome-Targeting Signal 1 Receptor/metabolism , Peroxisomes/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation/genetics , Peroxins , Peroxisome-Targeting Signal 1 Receptor/genetics , Peroxisome-Targeting Signal 1 Receptor/physiology , Peroxisomes/physiology , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Protein Transport/physiology , Proteolysis , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Sequence Deletion/genetics , Signal Transduction , Ubiquitin/metabolism , Ubiquitination/physiology
12.
Int J Mol Sci ; 18(12)2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29186924

ABSTRACT

Autophagy contributes to cellular homeostasis through the degradation of various intracellular targets such as proteins, organelles and microbes. This relates autophagy to various diseases such as infections, neurodegenerative diseases and cancer. A central component of the autophagy machinery is the class III phosphatidylinositol 3-kinase (PI3K-III) complex, which generates the signaling lipid phosphatidylinositol 3-phosphate (PtdIns3P). The catalytic subunit of this complex is the lipid-kinase VPS34, which associates with the membrane-targeting factor VPS15 as well as the multivalent adaptor protein BECLIN 1. A growing list of regulatory proteins binds to BECLIN 1 and modulates the activity of the PI3K-III complex. Here we discuss the regulation of BECLIN 1 by several different types of ubiquitination, resulting in distinct polyubiquitin chain linkages catalyzed by a set of E3 ligases. This contribution is part of the Special Issue "Ubiquitin System".


Subject(s)
Beclin-1/metabolism , Ubiquitination , Animals , Beclin-1/genetics , Humans , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
13.
Biol Chem ; 398(5-6): 677-685, 2017 05 01.
Article in English | MEDLINE | ID: mdl-27935849

ABSTRACT

The class III phosphatidylinositol 3-kinase Vps34 (vacuolar protein sorting 34) catalyzes for the formation of the signaling lipid phosphatidylinositol-3-phopsphate, which is a central factor in the regulation of autophagy, endocytic trafficking and vesicular transport. In this article, we discuss the functional role of the lipid kinase Vps34 in Saccharomyces cerevisiae.


Subject(s)
Class III Phosphatidylinositol 3-Kinases , Saccharomyces cerevisiae/enzymology , Animals , Class III Phosphatidylinositol 3-Kinases/chemistry , Class III Phosphatidylinositol 3-Kinases/metabolism , GTP-Binding Proteins/metabolism , Humans , Protein Subunits/chemistry , Protein Subunits/metabolism , Signal Transduction
14.
Biol Chem ; 398(5-6): 607-624, 2017 05 01.
Article in English | MEDLINE | ID: mdl-27977397

ABSTRACT

In peroxisomal matrix protein import two processes directly depend on the binding and hydrolysis of ATP, both taking place at the late steps of the peroxisomal import cycle. First, ATP hydrolysis is required to initiate a ubiquitin-transfer cascade to modify the import (co-)receptors. These receptors display a dual localization in the cytosol and at the peroxisomal membrane, whereas only the membrane bound fraction receives the ubiquitin modification. The second ATP-dependent process of the import cycle is carried out by the two AAA+-proteins Pex1p and Pex6p. These ATPases form a heterohexameric complex, which is recruited to the peroxisomal import machinery by the membrane anchor protein Pex15p. The Pex1p/Pex6p complex recognizes the ubiquitinated import receptors, pulls them out of the membrane and releases them into the cytosol. There the deubiquitinated receptors are provided for further rounds of import. ATP binding and hydrolysis are required for Pex1p/Pex6p complex formation and receptor export. In this review, we summarize the current knowledge on the peroxisomal import cascade. In particular, we will focus on the ATP-dependent processes, which are so far best understood in the model organism Saccharomyces cerevisiae.


Subject(s)
Adenosine Triphosphate/metabolism , Peroxisomes/metabolism , Protein Transport , Animals , Humans , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
15.
Biochim Biophys Acta ; 1863(5): 1027-37, 2016 May.
Article in English | MEDLINE | ID: mdl-26775584

ABSTRACT

Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies.


Subject(s)
Autophagy , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Organelle Biogenesis , Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Gene Expression Regulation , Glycerol-3-Phosphate Dehydrogenase (NAD+)/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Peroxisomal Targeting Signal 2 Receptor , Peroxisome-Targeting Signal 1 Receptor , Peroxisomes/chemistry , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
16.
Biochim Biophys Acta ; 1863(5): 838-49, 2016 May.
Article in English | MEDLINE | ID: mdl-26367801

ABSTRACT

Peroxisomes are organelles that play an important role in many cellular tasks. The functionality of peroxisomes depends on the proper import of their matrix proteins. Peroxisomal matrix proteins are imported posttranslationally in a folded, sometimes even oligomeric state. They harbor a peroxisomal targeting sequence (PTS), which is recognized by dynamic PTS-receptors in the cytosol. The PTS-receptors ferry the cargo to the peroxisomal membrane, where they become part of a transient import pore and then release the cargo into the peroxisomal lumen. Subsequentially, the PTS-receptors are ubiquitinated in order to mark them for the export-machinery, which releases them back to the cytosol. Upon deubiquitination, the PTS-receptors can facilitate further rounds of cargo import. Because the ubiquitination of the receptors is an essential step in the import cycle, it also represents a central regulatory element that governs peroxisomal dynamics. In this review we want to give an introduction to the functional role played by ubiquitination during peroxisomal protein import and highlight the mechanistic concepts that have emerged based on data derived from different species since the discovery of the first ubiquitinated peroxin 15years ago. Moreover, we discuss future tasks and the potential of using advanced technologies for investigating further details of peroxisomal protein transport.


Subject(s)
Adenosine Triphosphatases/metabolism , Membrane Proteins/metabolism , Peroxisomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Animals , Eukaryotic Cells/chemistry , Eukaryotic Cells/metabolism , Gene Expression Regulation , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Peroxisomes/chemistry , Plants/chemistry , Plants/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Protein Transport , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitination
17.
Cells ; 4(4): 596-621, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26445063

ABSTRACT

Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.

18.
J Biol Chem ; 290(44): 26610-26, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26359497

ABSTRACT

The peroxisomal matrix protein import is facilitated by cycling import receptors that shuttle between the cytosol and the peroxisomal membrane. The import receptor Pex5p mediates the import of proteins harboring a peroxisomal targeting signal of type I (PTS1). Purified recombinant Pex5p forms a dimeric complex with the PTS1-protein Pcs60p in vitro with a KD of 0.19 µm. To analyze the structural basis for receptor-cargo recognition, the PTS1 and adjacent amino acids of Pcs60p were systematically scanned for Pex5p binding by an in vitro site-directed photo-cross-linking approach. The cross-linked binding regions of the receptor were subsequently identified by high resolution mass spectrometry. Most cross-links were found with TPR6, TPR7, as well as the 7C-loop of Pex5p. Surface plasmon resonance analysis revealed a bivalent interaction mode for Pex5p and Pcs60p. Interestingly, Pcs60p lacking its C-terminal tripeptide sequence was efficiently cross-linked to the same regions of Pex5p. The KD value of the interaction of truncated Pcs60p and Pex5p was in the range of 7.7 µm. Isothermal titration calorimetry and surface plasmon resonance measurements revealed a monovalent binding mode for the interaction of Pex5p and Pcs60p lacking the PTS1. Our data indicate that Pcs60p contains a second contact site for its receptor Pex5p, beyond the C-terminal tripeptide. The physiological relevance of the ancillary binding region was supported by in vivo import studies. The bivalent binding mode might be explained by a two-step concept as follows: first, cargo recognition and initial tethering by the PTS1-receptor Pex5p; second, lock-in of receptor and cargo.


Subject(s)
Gene Expression Regulation, Fungal , Ligases/chemistry , Membrane Proteins/chemistry , Membrane Transport Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Kinetics , Ligases/genetics , Ligases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Peroxisome-Targeting Signal 1 Receptor , Peroxisomes/metabolism , Phosphorylation , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Thermodynamics , Transfection
19.
Biosci Rep ; 35(3)2015 May 14.
Article in English | MEDLINE | ID: mdl-26182377

ABSTRACT

Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p.


Subject(s)
Cysteine/metabolism , Membrane Transport Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Cysteine/genetics , Gene Deletion , Lysine/genetics , Lysine/metabolism , Membrane Transport Proteins/genetics , Peroxins , Peroxisome-Targeting Signal 1 Receptor , Peroxisomes/metabolism , Protein Transport , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
20.
Cancers (Basel) ; 7(1): 1-29, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25545884

ABSTRACT

The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes-autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

SELECTION OF CITATIONS
SEARCH DETAIL