Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mil Med ; 189(7-8): e1753-e1759, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38243767

ABSTRACT

INTRODUCTION: Military trainees are at increased risk for infectious disease outbreaks because of the unique circumstances of the training environment (e.g., close proximity areas and physiologic/psychologic stress). Standard medical countermeasures in military training settings include routine immunization (e.g., influenza and adenovirus) as well as chemoprophylaxis [e.g., benzathine penicillin G (Bicillin) for the prevention of group A streptococcal disease] for pathogens associated with outbreaks in these settings. In a population of U.S. Army Infantry trainees, we evaluated changes in the oral microbiome during a 14-week military training cycle. MATERIALS AND METHODS: Trainees were enrolled in an observational cohort study in 2015-2016. In 2015, Bicillin was administered to trainees to ameliorate the risk of group A Streptococcus outbreaks, whereas in 2016, trainees did not receive a Bicillin inoculation. Oropharyngeal swabs were collected from participants at days 0, 7, 14, 28, 56, and 90 of training. Swabs were collected, flash frozen, and stored. DNA was extracted from swabs, and amplicon sequencing of the 16s rRNA gene was performed. Microbiome dynamics were evaluated using the QIIME 2 workflow along with DADA2, SINA with SILVA, and an additional processing in R. RESULTS: We observed that microbiome samples from the baseline (day 0) visit were distinct from one another, whereas samples collected on day 14 exhibited significant microbiome convergence. Day 14 convergence was coincident with an increase in DNA sequences associated with Streptococcus, though there was not a significant difference between Streptococcus abundance over time between 2015 and 2016 (P = .07), suggesting that Bicillin prophylaxis did not significantly impact overall Streptococcus abundance. CONCLUSIONS: The temporary convergence of microbiomes is coincident with a rise in communicable infections in this population. The dynamic response of microbiomes during initial military training supports similar observations in the literature of transient convergence of the human microbiome under cohabitation in the time frame including in this experiment. This population and the associated longitudinal studies allow for controlled studies of human microbiome under diverse conditions.


Subject(s)
Microbiota , Military Personnel , Humans , Microbiota/physiology , Male , Military Personnel/statistics & numerical data , Female , Cohort Studies , Georgia/epidemiology , Mouth/microbiology , RNA, Ribosomal, 16S/analysis
2.
J AOAC Int ; 106(5): 1424-1430, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37067472

ABSTRACT

BACKGROUND: Accurate, high-confidence data is critical for assessing potential biothreat incidents. In a biothreat event, false-negative and -positive results have serious consequences. Worst case scenarios can result in unnecessary shutdowns or fatalities at an exorbitant monetary and psychological cost, respectively. Quantitative PCR assays for agents of interest have been successfully used for routine biosurveillance. Recently, there has been increased impetus for adoption of amplicon sequencing (AS) for biosurveillance because it enables discrimination of true positives from near-neighbor false positives, as well as broad, simultaneous detection of many targets in many pathogens in a high-throughput scheme. However, the high sensitivity of AS can lead to false positives. Appropriate controls and workflow reporting can help address these challenges. OBJECTIVES: Data reporting standards are critical to data trustworthiness. The standards presented herein aim to provide a framework for method quality assessment in biodetection. METHODS: We present a set of standards, Amplicon Sequencing Minimal Information (ASqMI), developed under the auspices of the AOAC INTERNATIONAL Stakeholder Program on Agent Detection Assays for making actionable calls in biosurveillance applications. In addition to the first minimum information guidelines for AS, we provide a controls checklist and scoring scheme to assure AS run quality and assess potential sample contamination. RESULTS: Adoption of the ASqMI guidelines will improve data quality, help track workflow performance, and ultimately provide decision makers confidence to trust the results of this new and powerful technology. CONCLUSION: AS workflows can provide robust, confident calls for biodetection; however, due diligence in reporting and controls are needed. The ASqMI guideline is the first AS minimum reporting guidance document that also provides the means for end users to evaluate their workflows to improve confidence. HIGHLIGHTS: Standardized reporting guidance for actionable calls is critical to ensuring trustworthy data.


Subject(s)
Research Design , Polymerase Chain Reaction
3.
Genes (Basel) ; 13(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-36292670

ABSTRACT

An optimized, well-tested and validated targeted genomic sequencing-based high-throughput assay is currently not available ready for routine biodefense and biosurveillance applications. Earlier, we addressed this gap by developing and establishing baseline comparisons of a multiplex end-point Polymerase Chain Reaction (PCR) assay followed by Oxford Nanopore Technology (ONT) based amplicon sequencing to real time PCR and customized data processing. Here, we expand upon this effort by identifying the optimal ONT library preparation method for integration into a novel software platform ONT-DART (ONT-Detection of Amplicons in Real-Time). ONT-DART is a dockerized, real-time, amplicon-sequence analysis workflow that is used to reproducibly process and filter read data to support actionable amplicon detection calls based on alignment metrics, within sample statistics, and no-template control data. This analysis pipeline was used to compare four ONT library preparation protocols using R9 and Flongle (FL) flow cells. The two 4-Primer methods tested required the shortest preparation times (5.5 and 6.5 h) for 48 libraries but provided lower fidelity data. The Native Barcoding and Ligation methods required longer preparation times of 8 and 12 h, respectively, and resulted in higher overall data quality. On average, data derived from R9 flow cells produced true positive calls for target organisms more than twice as fast as the lower throughput FL flow cells. These results suggest that utilizing the R9 flowcell with an ONT Native Barcoding amplicon library method in combination with ONT-DART platform analytics provides the best sequencing-based alternative to current PCR-based biodetection methods.


Subject(s)
Nanopores , Workflow , High-Throughput Nucleotide Sequencing/methods , Multiplex Polymerase Chain Reaction , Technology
4.
Front Bioinform ; 2: 969247, 2022.
Article in English | MEDLINE | ID: mdl-36685333

ABSTRACT

A major challenge in the field of metagenomics is the selection of the correct combination of sequencing platform and downstream metagenomic analysis algorithm, or "classifier". Here, we present the Metagenomic Evaluation Tool Analyzer (META), which produces simulated data and facilitates platform and algorithm selection for any given metagenomic use case. META-generated in silico read data are modular, scalable, and reflect user-defined community profiles, while the downstream analysis is done using a variety of metagenomic classifiers. Reported results include information on resource utilization, time-to-answer, and performance. Real-world data can also be analyzed using selected classifiers and results benchmarked against simulations. To test the utility of the META software, simulated data was compared to real-world viral and bacterial metagenomic samples run on four different sequencers and analyzed using 12 metagenomic classifiers. Lastly, we introduce "META Score": a unified, quantitative value which rates an analytic classifier's ability to both identify and count taxa in a representative sample.

5.
J Nutr ; 152(11): 2343-2357, 2022 11.
Article in English | MEDLINE | ID: mdl-36774101

ABSTRACT

BACKGROUND: Food processing alters diet digestibility and composition, thereby influencing interactions between host biology, diet, and the gut microbiota. The fecal metabolome offers insight into those relations by providing a readout of diet-microbiota interactions impacting host health. OBJECTIVES: The aims were to determine the effects of consuming a processed diet on the fecal metabolome and to explore relations between changes in the fecal metabolome with fecal microbiota composition and gastrointestinal health markers. METHODS: This was a secondary analysis of a randomized controlled trial wherein healthy adults [94% male; 18-61 y; BMI (kg/m2): 26 ± 3] consumed their usual diet [control (CON), n = 27] or a Meal, Ready-to-EatTM (Ameriqual Packaging) military ration diet composed of processed, shelf-stable, ready-to-eat items for 21 d (MRE; n = 27). Fecal metabolite profiles, fecal microbiota composition, biomarkers of intestinal barrier function, and gastrointestinal symptoms were measured before and after the intervention. Between-group differences and associations were assessed using nonparametric t tests, partial least-squares discriminant analysis, correlation, and redundancy analysis. RESULTS: Fecal concentrations of multiple dipeptides [Mann-Whitney effect size (ES) = 0.27-0.50] and long-chain SFAs (ES = 0.35-0.58) increased, whereas plant-derived compounds (ES = 0.31-0.60) decreased in MRE versus CON (P < 0.05; q < 0.20). Changes in dipeptides correlated positively with changes in fecal concentrations of Maillard-reaction products (ρ = 0.29-0.70; P < 0.05) and inversely with changes in serum prealbumin (ρ = -0.30 to -0.48; P ≤ 0.03). Multiple bile acids, coffee and caffeine metabolites, and plant-derived compounds were associated with both fecal microbiota composition and gastrointestinal health markers, with changes in fecal microbiota composition explaining 26% of the variability within changes in gastrointestinal health-associated fecal metabolites (P = 0.001). CONCLUSIONS: Changes in the fecal metabolomes of adults consuming a Meal, Ready-to-EatTM diet implicate interactions between diet composition, diet digestibility, and the gut microbiota as contributing to variability within gastrointestinal responses to the diet. Findings underscore the need to consider both food processing and nutrient composition when investigating the impact of diet-gut microbiota interactions on health outcomes. This trial was registered at www. CLINICALTRIALS: gov as NCT02423551.


Subject(s)
Gastrointestinal Microbiome , Adult , Humans , Diet , Gastrointestinal Tract , Feces/chemistry , Metabolome , Phytochemicals
6.
Life Sci Alliance ; 4(4)2021 04.
Article in English | MEDLINE | ID: mdl-33514656

ABSTRACT

Reference genome fidelity is critically important for genome wide association studies, yet most vary widely from the study population. A typical whole genome sequencing approach implies short-read technologies resulting in fragmented assemblies with regions of ambiguity. Further information is lost by economic necessity when genotyping populations, as lower resolution technologies such as genotyping arrays are commonly used. Here, we present a phased reference genome for Canis lupus familiaris using high molecular weight DNA-sequencing technologies. We tested wet laboratory and bioinformatic approaches to demonstrate a minimum workflow to generate the 2.4 gigabase genome for a Labrador Retriever. The de novo assembly required eight Oxford Nanopore R9.4 flowcells (∼23X depth) and running a 10X Genomics library on the equivalent of one lane of an Illumina NovaSeq S1 flowcell (∼88X depth), bringing the cost of generating a nearly complete reference genome to less than $10K (USD). Mapping of short-read data from 10 Labrador Retrievers against this reference resulted in 1% more aligned reads versus the current reference (CanFam3.1, P < 0.001), and a 15% reduction of variant calls, increasing the chance of identifying true, low-effect size variants in a genome-wide association studies. We believe that by incorporating the cost to produce a full genome assembly into any large-scale genotyping project, an investigator can improve study power, decrease costs, and optimize the overall scientific value of their study.


Subject(s)
Genome-Wide Association Study , Genome , Genomics , Wolves/classification , Wolves/genetics , Animals , Chromosome Mapping , Computational Biology , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Whole Genome Sequencing
7.
Microbiol Resour Announc ; 9(50)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33303672

ABSTRACT

The genome of Francisella tularensis live vaccine strain NR-28537 was sequenced by a hybrid approach utilizing an Oxford Nanopore Technologies R9 flow cell and an Illumina MiSeq platform. De novo assembly of the resulting long and short reads produced a single-contig whole-genome sequence.

8.
G3 (Bethesda) ; 10(10): 3467-3478, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32694197

ABSTRACT

Setaria viridis (green foxtail) is an important model system for improving cereal crops due to its diploid genome, ease of cultivation, and use of C4 photosynthesis. The S. viridis accession ME034V is exceptionally transformable, but the lack of a sequenced genome for this accession has limited its utility. We present a 397 Mb highly contiguous de novo assembly of ME034V using ultra-long nanopore sequencing technology (read N50 = 41kb). We estimate that this genome is largely complete based on our updated k-mer based genome size estimate of 401 Mb for S. viridis Genome annotation identified 37,908 protein-coding genes and >300k repetitive elements comprising 46% of the genome. We compared the ME034V assembly with two other previously sequenced Setaria genomes as well as to a diversity panel of 235 S. viridis accessions. We found the genome assemblies to be largely syntenic, but numerous unique polymorphic structural variants were discovered. Several ME034V deletions may be associated with recent retrotransposition of copia and gypsy LTR repeat families, as evidenced by their low genotype frequencies in the sampled population. Lastly, we performed a phylogenomic analysis to identify gene families that have expanded in Setaria, including those involved in specialized metabolism and plant defense response. The high continuity of the ME034V genome assembly validates the utility of ultra-long DNA sequencing to improve genetic resources for emerging model organisms. Structural variation present in Setaria illustrates the importance of obtaining the proper genome reference for genetic experiments. Thus, we anticipate that the ME034V genome will be of significant utility for the Setaria research community.


Subject(s)
Setaria Plant , Genome , Humans , Phylogeny , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Setaria Plant/genetics
9.
BMC Genomics ; 21(1): 166, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066372

ABSTRACT

BACKGROUND: The state-of-the-art in nucleic acid based biodetection continues to be polymerase chain reaction (PCR), and many real-time PCR assays targeting biodefense pathogens for biosurveillance are in widespread use. These assays are predominantly singleplex; i.e. one assay tests for the presence of one target, found in a single organism, one sample at a time. Due to the intrinsic limitations of such tests, there exists a critical need for high-throughput multiplex assays to reduce the time and cost incurred when screening multiple targets, in multiple pathogens, and in multiple samples. Such assays allow users to make an actionable call while maximizing the utility of the small volumes of test samples. Unfortunately, current multiplex real-time PCR assays are limited in the number of targets that can be probed simultaneously due to the availability of fluorescence channels in real-time PCR instruments. RESULTS: To address this gap, we developed a pipeline in which the amplicons produced by a 14-plex end-point PCR assay using spiked samples were subsequently sequenced using Nanopore technology. We used bar codes to sequence multiple samples simultaneously, leading to the generation and subsequent analysis of sequence data resulting from a short sequencing run time (< 10 min). We compared the limits of detection (LoD) of real-time PCR assays to Oxford Nanopore Technologies (ONT)-based amplicon sequencing and estimated the sample-to-answer time needed for this approach. Overall, LoDs determined from the first 10 min of sequencing data were at least one to two orders of magnitude lower than real-time PCR. Given enough time, the amplicon sequencing approach is approximately 100 times more sensitive than real-time PCR, with detection of amplicon specific reads even at the lowest tested spiking concentration (around 2.5-50 Colony Forming Units (CFU)/ml). CONCLUSIONS: Based on these results, we propose amplicon sequencing assay as a viable alternative to replace the current real-time PCR based singleplex assays for higher throughput biodefense applications. We note, however, that targeted amplicon specific reads were not detectable even at the highest tested spike concentrations (2.5 X 104-5.0 X105 CFU/ml) without an initial amplification step, indicating that PCR is still necessary when utilizing this protocol.


Subject(s)
Bacteria/genetics , High-Throughput Nucleotide Sequencing , Multiplex Polymerase Chain Reaction , Nanopores , Nanotechnology , Real-Time Polymerase Chain Reaction , Humans , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sensitivity and Specificity
10.
J Nutr Biochem ; 72: 108217, 2019 10.
Article in English | MEDLINE | ID: mdl-31473505

ABSTRACT

Interactions between gut microbes and dietary components modulate intestinal permeability (IP) and inflammation. Recent studies have reported altered fecal microbiota composition together with increased IP and inflammation in individuals consuming military food rations in austere environments, but could not isolate effects of the diet from environmental factors. To determine how the U.S. Meal, Ready-to-Eat food ration affects fecal microbiota composition, IP and inflammation, 60 adults (95% male,18-61 years) were randomized to consume their usual ad libitum diet for 31 days (CON) or a strictly controlled Meal, Ready-to-Eat-only diet for 21 days followed by their usual diet for 10 days (MRE). In both groups, fecal microbiota composition was measured before, during (INT, days 1-21) and after the intervention period. IP and inflammation [high-sensitivity C-reactive protein (hsCRP)] were measured on days 0, 10, 21 and 31. Longitudinal changes in fecal microbiota composition differed between groups (P=.005), and fecal samples collected from MRE during INT were identified with 88% accuracy using random forest models. The genera making the strongest contribution to that prediction accuracy included multiple lactic acid bacteria (Lactobacillus, Lactococcus, Leuconostoc), which demonstrated lower relative abundance in MRE, and several genera known to dominate the ileal microbiota (Streptococcus, Veillonella, Clostridium), the latter two demonstrating higher relative abundance in MRE. IP and hsCRP were both lower (34% and 41%, respectively) in MRE relative to CON on day 21 (P<.05) but did not differ otherwise. Findings demonstrate that a Meal, Ready-to-Eat ration diet alters fecal microbiota composition and does not increase IP or inflammation.


Subject(s)
Fast Foods , Gastrointestinal Microbiome , Intestinal Mucosa/physiology , Military Personnel , Adolescent , Adult , Diet , Fatty Acids, Volatile/metabolism , Feces/microbiology , Female , Gastroenteritis/etiology , Gastrointestinal Tract/physiology , Humans , Male , Middle Aged , Permeability , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...