Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 7944, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26264422

ABSTRACT

Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.

2.
Rev Sci Instrum ; 82(9): 093109, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21974575

ABSTRACT

High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camera software allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈10(13) W/cm(2)) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO(2) nanospheres.

3.
Phys Chem Chem Phys ; 13(19): 8705-14, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21442089

ABSTRACT

We report on the coherent control of the ultrafast ionization and fragmentation dynamics of the bromochloroalkanes C(2)H(4)BrCl and C(3)H(6)BrCl using shaped femtosecond laser pulses. In closed-loop control experiments on bromochloropropane (C(3)H(6)BrCl) the fragment ion yields of CH(2)Cl(+), CH(2)Br(+), and C(3)H(3)(+) are optimized with respect to that of the parent cation C(3)H(6)BrCl(+). The fragment ion yields are recorded in additional experiments in order to reveal the energetics of cation fragmentation, where laser-produced plasma radiation is used as a tunable pulsed nanosecond vacuum ultraviolet radiation source along with photoionization mass spectrometry. The time structure of the optimized femtosecond laser pulses leads to a depletion of the parent ion and an enhancement of the fragment ions, where a characteristic sequence of pulses is required. Specifically, an intense pump pulse is followed by a less intense probe pulse where the delay is 0.5 ps. Similarly optimized pulse shapes are obtained from closed-loop control experiments on bromochloroethane (C(2)H(4)BrCl), where the fragment ion yield of CH(2)Br(+) is optimized with respect to that of C(2)H(4)BrCl(+) as well as the fragment ion ratios C(2)H(2)(+)/CH(2)Br(+) and C(2)H(3)(+)/C(2)H(4)Cl(+). The assignment of the underlying control mechanism is derived from one-color 804 nm pump-probe experiments, where the yields of the parent cation and several fragments show broad dynamic resonances with a maximum at Δt = 0.5 ps. The experimental findings are rationalized in terms of dynamic ionic resonances leading to an enhanced dissociation of the parent cation and some primary fragment ions.


Subject(s)
Ethane/analogs & derivatives , Hydrocarbons, Halogenated/chemistry , Propane/analogs & derivatives , Ethane/chemistry , Lasers , Mass Spectrometry , Propane/chemistry , Time Factors
4.
J Chem Phys ; 130(24): 244313, 2009 Jun 28.
Article in English | MEDLINE | ID: mdl-19566159

ABSTRACT

We report on fluorescence spectra of N(2)(+)(B (2)Sigma(u)(+)) --> N(2)(+)(X (2)Sigma(g)(+)) obtained from multiphoton ionization of molecular nitrogen by 804 nm femtosecond laser pulses. The analysis of the fluorescence spectra reveals that the vibrational levels v = 0 and v = 4 in the B (2)Sigma(u)(+)-state of N(2)(+) are primarily populated. The rotational state distribution of N(2)(+)(B (2)Sigma(u)(+), v = 0) is determined from the rotationally resolved fluorescence spectra. It is demonstrated that the linear chirp of the 804 nm femtosecond laser pulse has a strong influence on the rotational state distribution of the vibrational ground state of the molecular cation N(2)(+)(B (2)Sigma(u)(+), v = 0). Possible mechanisms leading to the experimental results are discussed. The particular population of the vibrational levels as well as the linear chirp dependence of the fluorescence signal gives evidence for the importance of a resonant intermediate state. The N(2) a (1)Pi-state is likely involved in a resonant multiphoton excitation process. This permits to selectively control the rotational population of the cation that is formed via chirped pulse multiphoton ionization.

5.
J Chem Phys ; 128(7): 074307, 2008 Feb 21.
Article in English | MEDLINE | ID: mdl-18298149

ABSTRACT

Photoionization and autoionization of electronically excited atomic oxygen O((1)D) are investigated in the energy range between 12 and 26 eV using tunable laser-produced plasma radiation in combination with time-of-flight mass spectrometry. A broad, asymmetric, and intense feature is observed that is peaking at 20.53+/-0.05 eV. It is assigned to the 2s(2)2p(4)((1)D)-->2s(1)2p(5)((1)P) transition, which subsequently autoionizes by a Coster-Kronig transition, as predicted by the previous theoretical work [K. L. Bell et al., J. Phys. B 22, 3197 (1989)]. Specifically, the energy of the unperturbed transition occurs at 20.35+/-0.07 eV. Its shape is described by a Fano profile revealing a q parameter of 4.25+/-0.8 and a width of gamma=2.2+/-0.15 eV. Absolute photoionization cross section sigma is derived, yielding sigma=22.5+/-2.3 Mb at the maximum of the resonance. In addition, weak contributions to the O((1)D) yield from dissociative ionization originating from molecular singlet oxygen [O(2)((1)Delta(g))] are identified as well. Possible applications of the 2s(2)2p(4)((1)D)-->2s(1)2p(5)((1)P) transition as a state-selective and sensitive probe of excited oxygen in combination with photoionization mass spectrometry are briefly discussed.

6.
J Chem Phys ; 125(21): 214306, 2006 Dec 07.
Article in English | MEDLINE | ID: mdl-17166020

ABSTRACT

Radiative relaxation of S 2p-excited hydrogen sulfide (H(2)S) is investigated by dispersed ultraviolet and visible fluorescence spectroscopies. We observe distinct changes in the fluorescence spectra as a function of excitation energy. Excitation to Rydberg states below the S 2p ionization threshold yields intense fluorescence from neutral and ionic atomic fragments (H, S(+), and S(2+)). In addition to the atomic emission, fluorescence of the molecular fragment ion HS(+) is preferably found after excitation of the S 2p electron into the unoccupied 6a(1) and 3b(2) orbitals with sigma(*) character. This is interpreted as evidence for ultrafast dissociation of the core-excited molecule prior to electronic relaxation. The rotationally resolved fluorescence spectra of the A (3)Pi-->X (3)Sigma(-) transition are analyzed in terms of the fragmentation dynamics leading to the formation of the excited molecular fragment ion, where changes in bond angle are discussed in terms of the rotational population.

7.
J Phys Chem A ; 109(30): 6730-4, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16834026

ABSTRACT

The bond strength of chlorine peroxide (ClOOCl) is studied by photoionization mass spectrometry. The experimental results are obtained from the fragmentation threshold yielding ClO+, which is observed at 11.52 +/- 0.025 eV. The O-O bond strength D(o) is derived from this value in comparison to the first ionization energy of ClO, yielding D(o)298 = 72.39 +/- 2.8 kJ mol(-1). The present work provides a new and independent method to examine the equilibrium constant K(eq) for chlorine peroxide formation via dimerization of ClO in the stratosphere. This yields an approximation for the equilibrium constant in the stratospheric temperature regime between 190 and 230 K of the form K(eq) = 1.92 x 10(-27) cm3 molecules(-1) x exp(8430 K/T). This value of K(eq) is lower than current reference data and agrees well with high altitude aircraft measurements within their scattering range. Considering the error limits of the present experimental results and the resulting equilibrium constant, there is agreement with previous works, but the upper limit of current reference values appears to be too high. This result is discussed along with possible atmospheric implications.

SELECTION OF CITATIONS
SEARCH DETAIL
...